Probability

Lecturer: Stanley B. Gershwin

Probability and Statistics

Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What is the probability that it will show heads on the next flip?

Probability and Statistics

Probability \neq Statistics

Probability: mathematical theory that describes uncertainty.

Statistics: set of techniques for extracting useful information from data.

Interpretations of probabilitv

The probability that the outcome of an experiment is A is $P(A)$
if the experiment is performed a large number of times and the fraction of times that the observed outcome is A is $P(A)$.

Interpretations of probability

Parallel universes

The probability that the outcome of an experiment is A is $P(A)$
if the experiment is performed in each parallel universe and the fraction of universes in which the observed outcome is A is $P(A)$.

Interpretations of probability

Betting odds

The probability that the outcome of an experiment is A is $\boldsymbol{P}(\boldsymbol{A})$
if before the experiment is performed a risk-neutral observer would be willing to bet $\$ 1$ against more than $\$ \frac{1-P(A)}{P(A)}$.

Interpretations of probability

State of belief

The probability that the outcome of an experiment is A is $\boldsymbol{P}(\boldsymbol{A})$
if that is the opinion (ie, belief or state of mind) of an observer before the experiment is performed.

Interpretations of probability

Abstract measure

The probability that the outcome of an experiment is A is $P(A)$
if $P()$ satisfies a certain set of conditions: the axioms of probability.

Interpretations of probability

Abstract measure

Axioms of probability

Let \boldsymbol{U} be a set of samples. Let $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \ldots$ be subsets of \boldsymbol{U}. Let ϕ be the null set (the set that has no elements).
$\bullet 0 \leq P\left(E_{i}\right) \leq 1$

- $P(U)=1$
- $P(\phi)=0$
- If $\boldsymbol{E}_{i} \cap \boldsymbol{E}_{j}=\phi$, then $\boldsymbol{P}\left(\boldsymbol{E}_{i} \cup \boldsymbol{E}_{j}\right)=\boldsymbol{P}\left(\boldsymbol{E}_{i}\right)+\boldsymbol{P}\left(\boldsymbol{E}_{j}\right)$

Probability Basics

Discrete Sample Space

- Subsets of \boldsymbol{U} are called events.
- $\boldsymbol{P}(\boldsymbol{E})$ is the probability of \boldsymbol{E}.

Probability Basics

Discrete Sample Space

Set Theory

Venn diagrams

$$
卫(\bar{A})=\square=\square(A)
$$

Probability Basics

Set Theory

Venn diagrams

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Probability Basics

\boldsymbol{A} and \boldsymbol{B} are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Probability Basics

We can also write $P(A \cap B)=P(A \mid B) P(B)$.

Probability Basics

Conditional Probability

Example

Throw a die.

- \boldsymbol{A} is the event of getting an odd number (1,3,5).
- B is the event of getting a number less than or equal to 3 (1, 2, 3).

Then $P(A)=P(B)=1 / 2$ and $P(A \cap B)=P(1,3)=1 / 3$.
Also, $P(A \mid B)=P(A \cap B) / P(B)=2 / 3$.

Probability Basics

Law of Total Probability

- Let $B=C \cup D$ and assume $C \cap D=\phi$. Then

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)} \text { and } P(A \mid D)=\frac{P(A \cap D)}{P(D)}
$$

Probability Basics

Also,

- $P(C \mid B)=\frac{P(C \cap B)}{P(B)}=\frac{P(C)}{P(B)}$ because $C \cap B=C$.

Similarly, $P(D \mid B)=\frac{P(D)}{P(B)}$

- $P(A \cap B)=P(A \cap(C \cup D))=$
$P(A \cap C)+P(A \cap D)-P(A \cap(C \cap D))=$
or
$P(A \cap B)=P(A \cap C)+P(A \cap D)$

Probability Basics

- Or, $P(A \mid B) \operatorname{prob}(B)=P(A \mid C) P(C)+P(A \mid D) P(D)$ or,

$$
\frac{P(A \mid B) \operatorname{prob}(B)}{P(B)}=\frac{P(A \mid C) P(C)}{P(B)}+\frac{P(A \mid D) P(D)}{P(B)}
$$

or,

$$
P(A \mid B)=P(A \mid C) P(C \mid B)+P(A \mid D) P(D \mid B)
$$

Probability Basics

An important case is when $C \cup D=B=\boldsymbol{C}$, so that $\boldsymbol{A} \cap \boldsymbol{B}=\boldsymbol{A}$. Then

$$
\begin{aligned}
& P(A)=P(A \cap C)+P(A \cap D)= \\
& P(A \mid C) P(C)+P(A \mid D) P(D)
\end{aligned}
$$

Probability Basics

More generally, if \boldsymbol{A} and $\mathcal{E}_{1}, \ldots \mathcal{E}_{k}$ are events and \mathcal{E}_{i} and $\mathcal{E}_{j}=\emptyset$, for all $\boldsymbol{i} \neq \boldsymbol{j}$ and

$$
\bigcup_{j} \mathcal{E}_{j}=\text { the universal set }
$$

(ie, the set of \mathcal{E}_{j} sets is mutually exclusive and collectively exhaustive) then ...

Law of Total Probability

Probability Basics

Law of Total Probability

$$
\sum_{j} \operatorname{prob}\left(\mathcal{E}_{j}\right)=1
$$

and
$\operatorname{prob}(\boldsymbol{A})=\sum_{j} \operatorname{prob}\left(\boldsymbol{A} \mid \mathcal{E}_{j}\right) \operatorname{prob}\left(\mathcal{E}_{j}\right)$.

Probability Basics

Law of Total Probability

Example

$\boldsymbol{A}=\{I$ will have a cold tomorrow. $\}$
$\boldsymbol{B}=\{\mathrm{It}$ is raining today. $\}$
$C=\{I t$ is snowing today. $\}$
$D=\{I t$ is sunny today. $\}$
Assume $\boldsymbol{B} \cup \boldsymbol{C} \cup \boldsymbol{D}=\boldsymbol{U}$
Then $\boldsymbol{A} \cap \boldsymbol{B}=\{1$ will have a cold tomorrow and it is raining today $\}$.
And $\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$ is the probability I will have a cold tomorrow given that it is raining today. etc.

Probability Basics

Law of Total Probability

Example

Then
$\{I$ will have a cold tomorrow. $\}=$
$\{I$ will have a cold tomorrow and it is raining today $\} \cup$
$\{I$ will have a cold tomorrow and it is snowing today $\} \cup$
\{I will have a cold tomorrow and it is sunny today\}
SO
$\boldsymbol{P}(\{I$ will have a cold tomorrow. $\})=$
$\boldsymbol{P}(\{I$ will have a cold tomorrow and it is raining today $\})+$
$\boldsymbol{P}(\{$ I will have a cold tomorrow and it is snowing today $\})+$ $\boldsymbol{P}(\{I$ will have a cold tomorrow and it is sunny today $\})$

Probability Basics

Law of Total Probability

Example

$\boldsymbol{P}(\{$ I will have a cold tomorrow. $\})=$
$\boldsymbol{P}(\{I$ will have a cold tomorrow \mid it is raining today $\}) \boldsymbol{P}(\{$ it is raining today $\})+$
$\boldsymbol{P}(\{I$ will have a cold tomorrow \mid it is snowing today $\}) \boldsymbol{P}(\{$ it is snowing today $\})+$
$\boldsymbol{P}(\{I$ will have a cold tomorrow \mid it is sunny today $\})$ $\boldsymbol{P}(\{$ it is sunny today $\})$

Probability Basics

Let \boldsymbol{V} be a vector space. Then a random variable \boldsymbol{X} is a mapping (a function) from \boldsymbol{U} to \boldsymbol{V}.

If $\omega \in U$ and $x=X(\omega) \in V$, then X is a random variable.

Probability Basics

Random Variables

Flip of a Coin

Let $\boldsymbol{U}=\mathrm{H}, \mathrm{T}$. Let $\boldsymbol{\omega}=\mathrm{H}$ if we flip a coin and get heads; $\omega=\mathrm{T}$ if we flip a coin and get tails.

Let $\boldsymbol{X}(\boldsymbol{\omega})$ be the number of times we get heads. Then $\boldsymbol{X}(\boldsymbol{\omega})=0$ or 1 .

$$
P(\omega=\mathrm{T})=P(X=0)=1 / 2
$$

$$
P(\omega=\mathrm{H})=P(X=1)=1 / 2
$$

Probability Basics

Random Variables

Flip of Three Coins

Let $\boldsymbol{U}=\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{TH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}$.
Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\boldsymbol{\omega}=$ HHT if we flip 3 coins and get 2 heads and then tails, etc. The order matters!

- $P(\omega)=1 / 8$ for all ω.

Let \boldsymbol{X} be the number of heads. Then $\boldsymbol{X}=0,1,2$, or 3 .

- $P(X=0)=1 / 8 ; P(X=1)=3 / 8 ; P(X=2)=3 / 8 ;$ $P(X=3)=1 / 8$.

Probability Basics

Probability Distributions

Let $\boldsymbol{X}(\omega)$ be a random variable. Then $\boldsymbol{P}(\boldsymbol{X}(\boldsymbol{\omega})=\boldsymbol{x})$ is the probability distribution of \boldsymbol{X} (usually written $\boldsymbol{P}(\boldsymbol{x})$). For three coin flips:

Probability Basics

Probability Distributions

Mean and Variance

Mean (average): $\overline{\boldsymbol{x}}=\boldsymbol{\mu}_{\boldsymbol{x}}=\boldsymbol{E}(\boldsymbol{X})=\sum_{x} \boldsymbol{x P}(\boldsymbol{x})$
Variance:
$V_{x}=\sigma_{x}^{2}=E\left(x-\mu_{x}\right)^{2}=\sum_{x}\left(x-\mu_{x}\right)^{2} P(x)$
Standard deviation: $\sigma_{x}=\sqrt{V_{x}}$
Coefficient of variation (cv): σ_{x} / μ_{x}

Probability Basics

Probability Distributions

Example

For three coin flips:

$$
\bar{x}=1.5 ; V_{x}=0.75 ; \sigma_{x}=0.866 ; c v=0.577
$$

Probability Basics

Probability Distributions

Functions of a Random Variable

A function of a random variable is a random variable.

For every $\boldsymbol{\omega}$, let $\boldsymbol{Y}(\boldsymbol{\omega})=\boldsymbol{a} \boldsymbol{X}(\boldsymbol{\omega})+\boldsymbol{b}$. Then

- $\bar{Y}=a \bar{X}+b$.
- $V_{Y}=a^{2} V_{X}$;

$$
\sigma_{Y}=|a| \sigma_{X}
$$

Probability Basics

\boldsymbol{X} and \boldsymbol{Y} are random variables. Define the covariance of \boldsymbol{X} and \boldsymbol{Y} as:

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\boldsymbol{E}\left[\left(\boldsymbol{X}-\boldsymbol{\mu}_{x}\right)\left(\boldsymbol{Y}-\boldsymbol{\mu}_{y}\right)\right]
$$

Facts:

- $\operatorname{Var}(\boldsymbol{X}+\boldsymbol{Y})=\boldsymbol{V}_{\boldsymbol{x}}+\boldsymbol{V}_{\boldsymbol{y}}+2 \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})$
- If \boldsymbol{X} and \boldsymbol{Y} are independent, $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\mathbf{0}$.
- If \boldsymbol{X} and \boldsymbol{Y} vary in the same direction, $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})>\boldsymbol{0}$.
- If \boldsymbol{X} and \boldsymbol{Y} vary in the opposite direction, $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})<\mathbf{0}$.

Probability Basics

The correlation of \boldsymbol{X} and \boldsymbol{Y} is

$$
\operatorname{Corr}(\boldsymbol{X}, \boldsymbol{Y})=\frac{\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})}{\sigma_{x} \sigma_{y}}
$$

$$
-1 \leq \operatorname{Corr}(X, Y) \leq 1
$$

Discrete Random Variables

Bernoulli

Flip a biased coin. Assume all flips are independent.
X^{B} is 1 if outcome is heads; 0 if tails.
$P\left(X^{B}=1\right)=p$.
$P\left(X^{B}=0\right)=1-p$.
X^{B} is Bernoulli.

Discrete Random Variables

Binomial

The sum of n Bernoulli random variables \boldsymbol{X}_{i}^{B} with the same parameter \boldsymbol{p} is a binomial random variable $\boldsymbol{X}^{\boldsymbol{b}}$.

$$
\boldsymbol{X}^{b}=\sum_{i=0}^{n} \boldsymbol{X}_{i}^{B}
$$

$$
P\left(X^{b}=x\right)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{(n-x)}
$$

Discrete Random Variables

Geometric

The number of Bernoulli random variables $\boldsymbol{X}_{\boldsymbol{i}}^{\boldsymbol{B}}$ with the same parameter \boldsymbol{p} tested until the first 1 appears is a geometric random variable \boldsymbol{X}^{g}.
$X^{g}=\min _{i}\left\{X_{i}^{B}=1\right\}$
To calculate $P\left(X^{g}=x\right)$,

$$
\begin{aligned}
& P\left(X^{g}=1\right)=p ; \quad P\left(X^{g}>1\right)=1-p \\
& P\left(X^{g}>x\right)=P\left(X^{g}>x \mid X^{g}>x-1\right) P\left(X^{g}>x-1\right)
\end{aligned}
$$

$$
=(1-p) P\left(X^{g}>x-1\right) \text {, so }
$$

$$
P\left(X^{g}>x\right)=(1-p)^{x} \text { and } P\left(X^{g}=x\right)=(1-p)^{x-1} p
$$

Discrete Random Variables

$$
P\left(X^{P}=x\right)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

Discussion later.

Continuous random variables

1. Mathematically, continuous and discrete random variables are very different.
2. Quantitatively, however, some continuous models are very close to some discrete models.
3. Therefore, which kind of model to use for a given system is a matter of convenience .

Continuous random variables

Example: The production process for small metal parts (nuts, bolts, washers, etc.) might better be modeled as a continuous flow than as a large number of discrete parts.

Probability density

The probability of a two-dimensional random variable being in a small square is the probability density times the area of the square. (Actually, it is more general than this.)

Continuous random variables

Probability density

- Continuous random variables can be defined *in one, two, three, ..., infinite dimensional spaces; \star in finite or infinite regions of the spaces.
- Continuous random variables can have夫 probability measures with the same dimensionality as the space;
\star lower dimensionality than the space;
* a mix of dimensions.

Continuous

 random variables

Continuous

 random variables

Continuous random variables

Spaces

Dimensionality

$$
x_{1}
$$

Probability

 distribution of the amount of material in each of the two buffers.
Spaces

Discrete approximation

Probability distribution of the amount of material in each of the two buffers.

Continuous
 Densities and Distributions random variables

In one dimension, $\boldsymbol{F}()$ is the cumulative probability distribution of \boldsymbol{X} if

$$
F(x)=P(X \leq x)
$$

$f()$ is the density function of \boldsymbol{X} if

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

or

$$
f(x)=\frac{d F}{d x}
$$

wherever \boldsymbol{F} is differentiable.

Continuous Densities and Distributions random variables

Fact: $\boldsymbol{F}(\boldsymbol{b})-\boldsymbol{F}(\boldsymbol{a})=\int_{a}^{b} f(t) d t$
Fact: $f(x) \delta x \approx P(x \leq X \leq x+\delta x)$ for sufficiently small δx.

Definition: $\bar{x}=\int_{-\infty}^{\infty} t f(t) d t$

Continuous random variables

Normal Distribution

The density function of the normal (or gaussian) distribution with mean 0 and variance 1 (the standard normal) is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

The normal distribution function is

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

(There is no closed form expression for $\boldsymbol{F}(\boldsymbol{x})$.)

Normal Distribution

Continuous random variables

Notation: $N(\mu, \sigma)$ is the normal distribution with mean μ and variance σ^{2}.

Note: Some people write $N\left(\mu, \sigma^{2}\right)$ for the normal distribution with mean μ and variance σ^{2}.

Fact: If \boldsymbol{X} and \boldsymbol{Y} are normal, then $\boldsymbol{a X}+\boldsymbol{b} \boldsymbol{Y}+\boldsymbol{c}$ is normal. Fact: If X is $N(\mu, \sigma)$, then $\frac{X-\mu}{\sigma}$ is $N(0,1)$, the standard normal.

This is why $N(0,1)$ is tabulated in books and why $N(\mu, \sigma)$ is easy to compute.

Continuous
 random variables

Theorems

Law of Large Numbers

Let $\left\{\boldsymbol{X}_{k}\right\}$ be a sequence of independent identically distributed (i.i.d.) random variables that have the same finite mean $\boldsymbol{\mu}$. Let S_{n} be the sum of the first $n X_{k} \mathrm{~s}$, so

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

Then for every $\epsilon>\mathbf{0}$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-\mu\right|>\epsilon\right)=0
$$

That is, the average approaches the mean.

Continuous random variables

Theorems

Central Limit Theorem

Let $\left\{X_{k}\right\}$ be a sequence of i.i.d. random variables with finite mean $\boldsymbol{\mu}$ and finite variance σ^{2}.

Then as $n \rightarrow \infty, P\left(\frac{S_{n}-n \mu}{\sqrt{n} \sigma}\right) \rightarrow N(\mathbf{0}, \mathbf{1})$.
If we define A_{n} as S_{n} / n, the average of the first n $\boldsymbol{X}_{k} \mathrm{~s}$, then this is equivalent to:

As $n \rightarrow \infty, P\left(A_{n}\right) \rightarrow N(\mu, \sigma / \sqrt{n})$.

Continuous random variables

Theorems

Coin flip examples

Probability of x heads in n flips of a fair coin

Continuous random variables
 Why are these distributions so similar?

 Binomial distributions

Continuous random variables

Binomial for large N approaches normal.

Normal Density Function

More Continuous Distributions

Uniform

$f(x)=\frac{1}{b-a}$ for $a \leq x \leq b$
$f(x)=0 \quad$ otherwise

Uniform density

Uniform distribution

Triangular

Probability density function

© Wikipedia. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse

Continuous Distributions

Cumulative distribution function

© Wikipedia. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Continuous
Distributions

Exponential

- $f(t)=\lambda e^{-\lambda t} \quad$ for $t \geq 0 ; \quad f(t)=0$ otherwise; $P(T>t)=e^{-\lambda t} \quad$ for $t \geq 0 ; \quad P(T>t)=1$ otherwise;
- Same as the geometric distribution but for continuous time.
- Very mathematically convenient. Often used as model for the first time until an event occurs.
- Memorylessness:

$$
P(T>t+x \mid T>x)=P(T>t)
$$

The probability distribution
$F(t)=1-P(T>t)=1-e^{-\lambda t} \quad$ for $t \geq 0 ; \quad F(t)=0$ otherwise;

Exponential
Continuous Distributions

Exponential

Poisson Distribution

$P\left(X^{P}=x\right)=e^{-\lambda t} \frac{(\lambda t)^{x}}{x!}$
is the probability that \boldsymbol{x} events happen in $[0, t]$ if the events are independent and the times between them are exponentially distributed with parameter $\boldsymbol{\lambda}$.

Typical examples: arrivals and services at queues. (Next lecture!)

MIT OpenCourseWare
http://ocw.mit.edu

2.854 / 2.853 Introduction to Manufacturing Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

