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Agenda

1. Comparison of Treatments (One Variable)

• Analysis of Variance (ANOVA)

2. Multivariate Analysis of Variance

• Model forms

3. Regression Modeling

• Regression fundamentals

• Significance of model terms

• Confidence intervals
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Is Process B Better Than Process A?

yield
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time order

Assume variances in A and B are equal.

time

order method yield

1 A 89.7

2 A 81.4

3 A 84.5

4 A 84.8

5 A 87.3

6 A 79.7

7 A 85.1

8 A 81.7

9 A 83.7

10 A 84.5

11 B 84.7

12 B 86.1

13 B 83.2

14 B 91.9

15 B 86.3

16 B 79.3

17 B 82.6

18 B 89.1

19 B 83.7

20 B 88.5
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Two Means with Internal Estimate of Variance

Method A Method B

Pooled estimate of 2

Estimated variance

of

with =18 d.o.f

Estimated standard error

of

So only about 80.5% confident that 

mean difference is “real” (significant)
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Comparison of Treatments

Sample A
Sample B

Sample C
Population A

Population B
Population C

• Consider multiple conditions (treatments, settings for some variable)

– There is an overall mean and real “effects” or deltas between conditions i.

– We observe samples at each condition of interest

• Key question: are the observed differences in mean “significant”?

– Typical assumption (should be checked): the underlying variances are all the 
same – usually an unknown value ( 0

2)
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Steps/Issues in Analysis of Variance

1. Within group variation

– Estimate underlying population variance

2. Between group variation

– Estimate group to group variance

3. Compare the two estimates of variance

– If there is a difference between the different treatments, 

then the between group variation estimate will be inflated

compared to the within group estimate

– We will be able to establish confidence in whether or not 

observed differences between treatments are significant

Hint: we’ll be using F tests to look at ratios of variances
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(1) Within Group Variation

• Assume that each group is normally distributed and shares a 
common variance 0

2

• SSt = sum of square deviations within tth group (there are k groups)

• Estimate of within group variance in tth group (just variance formula)

• Pool these (across different conditions) to get estimate of common 
within group variance:

• This is the within group “mean square” (variance estimate)
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(2) Between Group Variation

• We will be testing hypothesis 1 = 2 = … = k

• If all the means are in fact equal, then a 2nd estimate 

of 2 could be formed based on the observed 

differences between group means:

• If the treatments in fact have different means, then 

sT
2 estimates something larger:

Variance is “inflated” by the 

real treatment effects t
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(3) Compare Variance Estimates

• We now have two different possibilities for sT
2, 

depending on whether the observed sample mean 

differences are “real” or are just occurring by chance 

(by sampling)

• Use F statistic to see if the ratios of these variances 

are likely to have occurred by chance!

• Formal test for significance:
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(4) Compute Significance Level

• Calculate observed F ratio (with appropriate 

degrees of freedom in numerator and 

denominator)

• Use F distribution to find how likely a ratio this 

large is to have occurred by chance alone

– This is our “significance level”

– Define observed ratio: 

– If

then we say that the mean differences or treatment 

effects are significant to (1- )100% confidence or 

better
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(5) Variance Due to Treatment Effects

• We also want to estimate the sum of squared 

deviations from the grand mean among all 

samples:



(6) Results: The ANOVA Table

degrees
source of sum of of mean square F0 Pr(F0)
variation squares freedom

Between 

treatments

Within 

treatments

Total about 

the grand 

average

12

Also referred to

as “residual” SS
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Example: Anova

A B C

11 10 12

10 8 10

12 6 11

A B C
(t = 1) (t = 2) (t = 3)

12

10

8

6

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

A 3 33 11 1

B 3 24 8 4

C 3 33 11 1

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 18 2 9 4.5 0.064 5.14

Within Groups 12 6 2

Total 30 8

Excel: Data Analysis, One-Variation Anova
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ANOVA – Implied Model

• The ANOVA approach assumes a simple mathematical 
model:

• Where t is the treatment mean (for treatment type t)

• And t is the treatment effect

• With ti being zero mean normal residuals ~N(0, 0
2) 

• Checks
– Plot residuals against time order

– Examine distribution of residuals: should be IID, Normal

– Plot residuals vs. estimates

– Plot residuals vs. other variables of interest 
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MANOVA – Two Dependencies

• Can extend to two (or more) variables of interest. MANOVA 
assumes a mathematical model, again simply capturing the means 
(or treatment offsets) for each discrete variable level:

• Assumes that the effects from the two variables are additive

^ indicates estimates:
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Model
Error
C. Total

Source

3
2
5

DF

1350.00
28.00

1378.00

Sum of Squares

450.0
14.0

Mean Square

32.14

F Ratio

0.0303

Prob > F

Analysis of Variance

Tube
Gas

Source

1
2

Nparm

1
2

DF

150.00
1200.00

Sum of Squares

10.71
42.85

F Ratio

0.0820
0.0228

Prob > F

Effect Tests

Gas
Factor 1

104010

1523671

Tube

Factor 2

CBA

251844132

2 1 -3

-2 -1 3

-10 20 -10

-10 20 -10

20 20 20

20 20 20

-5 -5 -5

5 5 5

7 36 2

13 44 18

Example: Two Factor MANOVA

• Two LPCVD deposition tube types, three gas suppliers. Does supplier matter 

in average particle counts on wafers?

– Experiment: 3 lots on each tube, for each gas; report average # particles added
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MANOVA – Two Factors with Interactions

• Can split out the model more explicitly…

IID, ~N(0, 2)

An effect that depends on both

t & q factors simultaneously

t  = first factor = 1,2, … k          (k = # levels of first factor)

q = second factor = 1,2, … n    (n = # levels of second factor)

i  = replication = 1,2, … m        (m = # replications at t, qth combination of factor levels

• May be interaction: not simply additive – effects may depend 
synergistically on both factors:

Estimate by:
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MANOVA Table – Two Way with Interactions

mean square F0

Total about 

the grand 

average

Within Groups 

(Error)

Between levels 

of factor 1 (T)

Pr(F0)

degrees

of

freedom

sum of 

squares

source of 

variation

Between levels 

of factor 2 (B)

Interaction
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Measures of Model Goodness – R2

• Goodness of fit – R2

– Question considered: how much better does the model do than just 

using the grand average?

– Think of this as the fraction of squared deviations (from the grand 

average) in the data which is captured by the model

• Adjusted R2

– For “fair” comparison between models with different numbers of 

coefficients, an alternative is often used

– Think of this as (1 – variance remaining in the residual). 

Recall R = D - T
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Regression Fundamentals

• Use least square error as measure of goodness to 
estimate coefficients in a model

• One parameter model:

– Model form

– Squared error

– Estimation using normal equations

– Estimate of experimental error

– Precision of estimate: variance in b

– Confidence interval for 

– Analysis of variance: significance of b

– Lack of fit vs. pure error

• Polynomial regression
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Least Squares Regression

• We use least-squares to estimate 

coefficients in typical regression models

• One-Parameter Model:

• Goal is to estimate with “best” b

• How define “best”?

– That b which minimizes sum of squared 

error between prediction and data

– The residual sum of squares (for the 

best estimate) is
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Least Squares Regression, cont.

• Least squares estimation via normal 

equations

– For linear problems, we need not 

calculate SS( ); rather, direct solution for 

b is possible

– Recognize that vector of residuals will be 

normal to vector of x values at the least 

squares estimate

• Estimate of experimental error

– Assuming model structure is adequate, 

estimate s2 of 2 can be obtained:
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Precision of Estimate: Variance in b

• We can calculate the variance in our estimate of the slope, b:

• Why?
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Confidence Interval for 

• Once we have the standard error in b, we can calculate confidence 

intervals to some desired (1- )100% level of confidence

• Analysis of variance

– Test hypothesis: 

– If confidence interval for includes 0, then not significant

– Degrees of freedom (need in order to use t distribution)

p = # parameters estimated

by least squares
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Example Regression

Model

Error

C. Total

Source

1

8

9

DF

8836.6440

64.6695

8901.3135

Sum of Squares

8836.64

8.08

Mean Square

1093.146

F Ratio

<.0001

Prob > F

Tested against reduced model: Y=0

Analysis of Variance

Intercept

age

Term

Zeroed 0

0.500983

Estimate

0

0.015152

Std Error

.

33.06

t Ratio

.

<.0001

Prob>|t|

Parameter Estimates

age

Source

1

Nparm

1

DF

8836.6440

Sum of Squares

1093.146

F Ratio

<.0001

Prob > F

Effect Tests

Whole Model
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age Leverage, P<.0001

Age Income

8 6.16

22 9.88

35 14.35

40 24.06

57 30.34

73 32.17

78 42.18

87 43.23

98 48.76

• Note that this simple model assumes an intercept of 

zero – model must go through origin

• We will relax this requirement soon
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Lack of Fit Error vs. Pure Error

• Sometimes we have replicated data

– E.g. multiple runs at same x values in a designed experiment

• We can decompose the residual error contributions

• This allows us to TEST for lack of fit

– By “lack of fit” we mean evidence that the linear model form is inadequate

Where

SSR = residual sum of squares error

SSL = lack of fit squared error

SSE = pure replicate error
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Regression: Mean Centered Models

• Model form

• Estimate by
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Regression: Mean Centered Models

• Confidence Intervals

• Our confidence interval on y widens as we get 

further from the center of our data!
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Polynomial Regression

• We may believe that a higher order model structure applies. 

Polynomial forms are also linear in the coefficients and can be fit 

with least squares

• Example: Growth rate data

Curvature included through x2 term
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Regression Example: Growth Rate Data

• Replicate data provides opportunity to check for lack of fit

60

65

70

75

80

85

90

95

y

5 10 15 20 25 30 35 40

x

Fit Mean 

Linear Fit

Polynomial Fit Degree=2

Bivariate Fit of y By x

Image by MIT OpenCourseWare.



31

Growth Rate – First Order Model

• Mean significant, but linear term not

• Clear evidence of lack of fit

Source Sum of squares Degrees of 
freedom

Mean square

Model

Residual
lack of fit

SM = 67,428.6 2 67,404.1

164.85
6.75

ratio = 24.4285.8

24.5
1
1

SL = 659.40

mean 67,404.1
extra for linear 24.5

SE = 27.0
SR = 686.4

ST = 68,115.0

pure error

Total

{ {
{ {

{8 4
4

10

{

Image by MIT OpenCourseWare.
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Growth Rate – Second Order Model

• No evidence of lack of fit

• Quadratic term significant

Source Sum of squares Degrees of 
freedom

Mean square

Model

Residual

SM = 68,071.8 3
67,404.1

5.40
6.75

ratio = 0.80

24.5
643.2

1
1
1

SL = 16.2

mean 67,404.1
extra for linear 24.5
extra for quadratic 643.2

SE = 27.0
SR = 43.2

ST = 68,115.0Total

{
{ {

{7 3
4

10

{

Image by MIT OpenCourseWare.
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Polynomial Regression In Excel

• Create additional input columns for each input

• Use “Data Analysis” and “Regression” tool

x x 2̂ y

10 100 73

10 100 78

15 225 85

20 400 90

20 400 91

25 625 87

25 625 86

25 625 91

30 900 75

35 1225 65

-0.097-0.1582.2E-05-9.9660.013-0.128x^2
6.5823.9433.1E-059.4310.5585.263x

48.94222.3730.00046.3475.61835.657Intercept

Upper 
95%

Lower
95%P-valuet Stat

Standard 
ErrorCoefficients

710.99Total

6.45645.1947Residual

6.48E-0551.555332.853665.7062Regression

Significance FFMSSSdf

ANOVA

10Observations

2.541Standard Error

0.918Adjusted R Square

0.936R Square

0.968Multiple R

Regression Statistics
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Polynomial Regression

• Generated using JMP package

RSquare 0.936427

RSquare Adj 0.918264

Root Mean Sq Error 2.540917

Mean of Response 82.1

Observations (or Sum Wgts) 10

Model

Error

C. Total

Summary of Fit

Source

2

7

9

DF

665.70617

45.19383

710.90000

Sum of Squares

332.853

6.456

Mean Square

51.5551

F Ratio

<.0001

Prob > F

Analysis of Variance

Lack Of Fit

Pure Error

Total Error

Source

3

4

7

DF

18.193829

27.000000

45.193829

Sum of Squares

6.0646

6.7500

Mean Square

0.8985

F Ratio

0.5157

Prob > F

0.9620

Max RSq

Lack Of Fit

Intercept

x

x*x

Term

35.657437

5.2628956

-0.127674

Estimate

5.617927

0.558022

0.012811

Std Error

6.35

9.43

-9.97

t Ratio

0.0004

<.0001

<.0001

Prob>|t|

Parameter Estimates

x

x*x

Source

1

1

Nparm

1

1

DF

574.28553

641.20451

Sum of Squares

88.9502

99.3151

F Ratio

<.0001

<.0001

Prob > F

Effect Tests
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Summary

• Comparison of Treatments – ANOVA

• Multivariate Analysis of Variance

• Regression Modeling

Next Time

• Time Series Models

• Forecasting
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