Data and Regression Analysis

Lecturer: Prof. Duane S. Boning

Agenda

1. Comparison of Treatments (One Variable)

- Analysis of Variance (ANOVA)

2. Multivariate Analysis of Variance

- Model forms

3. Regression Modeling

- Regression fundamentals
- Significance of model terms
- Confidence intervals

Is Process B Better Than Process A?

Two Means with Internal Estimate of Variance

Method A
count
sum
average
sum squares

$$
n_{A}=10
$$

$$
842.4
$$

$$
\begin{aligned}
& \bar{y}_{A}=84.24 \\
& \sum\left(y_{A}-\bar{y}_{A}\right)^{2}=75.784
\end{aligned}
$$

Method B

count	$n_{B}=10$
sum	855.4
average	$\bar{y}_{B}=85.54$
sum squares	$\sum\left(y_{B}-\bar{y}_{B}\right)^{2}=119.924$

$$
\bar{y}_{B}-\bar{y}_{A}=1.30
$$

Pooled estimate of $\sigma^{2} \quad s^{2}=\frac{75.784+119.924}{10+10-2}=\frac{195.708}{18}=10.8727$ with $v=18$ d.o.f
Estimated variance of $\bar{y}_{B}-\bar{y}_{A}$

$$
s^{2}\left(\frac{1}{n_{B}}+\frac{1}{n_{A}}\right)=\frac{2 s^{2}}{10}=\frac{s^{2}}{5}
$$

Estimated standard error of $\bar{y}_{B}-\bar{y}_{A}$

$$
\begin{aligned}
& \sqrt{\frac{s^{2}}{5}}=\sqrt{\frac{10.8727}{5}}=1.47 \\
& t_{0}=\frac{\left(\bar{y}_{B}-\bar{y}_{A}\right)-\left(\mu_{B}-\mu_{A}\right)}{s \sqrt{1 / n_{A}+1 / n_{B}}}
\end{aligned}
$$

For $\mu_{B}-\mu_{A}=0, t_{0}=\frac{1.30}{1.47}=0.88$ with $\nu=18$ degrees of freedom.

$$
\operatorname{Pr}\left(t \geq t_{0}\right)=\operatorname{Pr}(t \geq 0.88)=0.195
$$

So only about 80.5\% confident that mean difference is "real" (significant)

Comparison of Treatments

Population A

Population C
Population B

Sample A
Sample B Sample C

- Consider multiple conditions (treatments, settings for some variable)
- There is an overall mean μ and real "effects" or deltas between conditions τ_{i}.
- We observe samples at each condition of interest
- Key question: are the observed differences in mean "significant"?
- Typical assumption (should be checked): the underlying variances are all the same - usually an unknown value ($\sigma_{0}{ }^{2}$)

Steps/Issues in Analysis of Variance

1. Within group variation

- Estimate underlying population variance

2. Between group variation

- Estimate group to group variance

3. Compare the two estimates of variance

- If there is a difference between the different treatments, then the between group variation estimate will be inflated compared to the within group estimate
- We will be able to establish confidence in whether or not observed differences between treatments are significant
Hint: we'll be using F tests to look at ratios of variances

(1) Within Group Variation

- Assume that each group is normally distributed and shares a common variance $\sigma_{0}{ }^{2}$
- $S S_{t}=$ sum of square deviations within $t^{\text {th }}$ group (there are k groups)
$S S_{t}=\sum_{i=1}^{n_{t}}\left(y_{t i}-\bar{y}_{t}\right)^{2}$ where n_{t} is number of samples in treatment t
- Estimate of within group variance in $\mathrm{t}^{\text {th }}$ group (just variance formula)

$$
s_{t}^{2}=S S_{t} / \nu_{t}=\frac{S S_{t}}{n_{t}-1} \quad \text { where } \nu_{t} \text { is d.o.f. in treatment } t
$$

- Pool these (across different conditions) to get estimate of common within group variance:
$s_{R}^{2}=\frac{\nu_{1} s_{1}^{2}+\nu_{1} s_{1}^{2}+\cdots+\nu_{k} s_{k}^{2}}{\nu_{1}+\nu_{2}+\cdots+\nu_{k}}=\frac{S S_{R}}{\nu_{R}}=\frac{S S_{R}}{N-k}=\frac{\sum_{t} \sum_{i}\left(y_{t i}-\overline{y_{t}}\right)^{2}}{N-k}=\frac{\sum_{t} S S_{t}}{N-k}$
- This is the within group "mean square" (variance estimate)

$$
M S_{R}=\frac{S S_{R}}{\nu_{R}}=s_{R}^{2}
$$

(2) Between Group Variation

- We will be testing hypothesis $\mu_{1}=\mu_{2}=\ldots=\mu_{k}$
- If all the means are in fact equal, then a $2^{\text {nd }}$ estimate of σ^{2} could be formed based on the observed differences between group means:

$$
s_{T}^{2}=\frac{\sum_{t=1}^{k} n_{t}\left(\bar{y}_{t}-\bar{y}\right)^{2}}{k-1}=\frac{S S_{T}}{k-1}
$$ where n_{t} is number of samples in treatment t, and k is the number of different treatments

- If the treatments in fact have different means, then $\mathrm{S}_{\mathrm{T}}{ }^{2}$ estimates something larger:

$$
s_{T}^{2} \simeq \sigma_{0}^{2}+\frac{\sum_{t=1}^{k} n_{t} \tau_{t}^{2}}{k-1} \quad \begin{aligned}
& \text { where } \tau_{t} \text { is the (real) difference between } \\
& \text { group } t \text { mean and the grand mean } \mu \\
& \begin{array}{c}
\text { Variance is "inflated" by the } \\
\text { real treatment effects } \tau_{t}
\end{array}
\end{aligned}
$$

(3) Compare Variance Estimates

- We now have two different possibilities for $\mathrm{s}_{\mathrm{T}}{ }^{2}$, depending on whether the observed sample mean differences are "real" or are just occurring by chance (by sampling)
- Use F statistic to see if the ratios of these variances are likely to have occurred by chance!
- Formal test for significance:

$$
\begin{aligned}
& \text { Reject } H_{0}\left(H_{0}: \text { no mean difference }\right) \\
& \text { if } \frac{s_{T}^{2}}{s_{R}^{2}} \text { is significantly greater than } 1 \text {. }
\end{aligned}
$$

(4) Compute Significance Level

- Calculate observed F ratio (with appropriate degrees of freedom in numerator and denominator)
- Use F distribution to find how likely a ratio this large is to have occurred by chance alone
- This is our "significance level"
- Define observed ratio: $F_{0}=s_{T}^{2} / s_{R}^{2}$
- If $F_{0}>F_{\alpha, k-1, N-k}$
then we say that the mean differences or treatment effects are significant to ($1-\alpha$) 100\% confidence or better

(5) Variance Due to Treatment Effects

- We also want to estimate the sum of squared deviations from the grand mean among all samples:

$$
\begin{aligned}
& S S_{D}=\sum_{t=1}^{k} \sum_{i=1}^{n_{t}}\left(y_{t i}-\bar{y}\right)^{2} \\
& s_{D}^{2}=S S_{D} / \nu_{D}=\frac{S S_{D}}{N-1}=M S_{D}
\end{aligned}
$$

where N is the total number of measurements

(6) Results: The ANOVA Table

degrees

$\begin{gathered}\text { Between } \\ \text { treatments }\end{gathered} S S_{T} \quad k-1 \quad s_{T}^{2}=\frac{S S_{T}}{k-1} \quad \frac{s_{T}^{2}}{s_{R}^{2}} \quad$ table

Within \quad| Also referred to |
| :--- |
| as "residual" ss |

treatments $\quad S S_{R} \quad N-k \quad s_{R}^{2}=\frac{S S_{R}}{N-k}$
Total about

Example: Anova

A	B	C
11	10	12
10	8	10
12	6	11

Excel: Data Analysis, One-Variation Anova

$$
\begin{array}{ccc}
A & B & C \\
(t=1) & (t=2) & (t=3)
\end{array}
$$

$$
S S_{1}=(12-11)^{2}+(11-11)^{2}+(10-11)^{2}=2
$$

$$
S S_{2}=2^{2}+0^{2}+2^{2}=8
$$

$$
S S_{3}=1^{2}+0^{2}+1=2
$$

$$
\begin{aligned}
& s_{1}^{2}=M S_{1}=S S_{1} / 2=2 / 2=1 \\
& s_{2}^{2}=M S_{2}=8 / 2=4 \\
& s_{3}^{2}=M S_{3}=2 / 2=1 \\
& s_{R}^{2}=\frac{S S_{1}+S S_{2}+S S_{3}}{N-k}=12
\end{aligned}
$$

$$
s_{T}^{2}=\frac{3(11-10)^{2}+3(8-10)^{2}+3(11-10)^{2}}{S S_{T}}
$$

$$
=\frac{S S_{T}}{\nu_{T}}=\frac{18}{2}=9
$$

ANOVA - Implied Model

- The ANOVA approach assumes a simple mathematical model:

$$
\begin{aligned}
y_{t i} & =\mu+\tau_{t}+\epsilon_{t i} \\
& =\mu_{t}+\epsilon_{t i}
\end{aligned}
$$

- Where μ_{t} is the treatment mean (for treatment type t)
- And τ_{t} is the treatment effect
- With $\varepsilon_{\mathrm{ti}}$ being zero mean normal residuals $\sim \mathrm{N}\left(0, \sigma_{0}{ }^{2}\right)$
- Checks
- Plot residuals against time order
- Examine distribution of residuals: should be IID, Normal
- Plot residuals vs. estimates
- Plot residuals vs. other variables of interest

MANOVA - Two Dependencies

- Can extend to two (or more) variables of interest. MANOVA assumes a mathematical model, again simply capturing the means (or treatment offsets) for each discrete variable level:
$\begin{array}{llllllll} & y_{t q i} & =\mu & + & \tau_{t} & + & \beta_{q} & + \\ \wedge & \epsilon_{t q i} \\ & \text { indicates estimates: } & \hat{y}_{t q} & =\hat{\mu} & + & \hat{\tau}_{t} & + & \hat{\beta}_{q}\end{array}$
\($$
\begin{aligned} \text { \# model coeffs } & =1 \\
\uparrow & + \\
\uparrow & k\end{aligned}
$$+\begin{gathered}n

\# independent model coeffs\end{gathered}=\)| 1 |
| :--- |

Recall that our $\hat{\tau}_{t}$ are not all independent model coefficients, because $\sum \tau_{t}=0$. Thus we really only have $k-1$ independent model coeffs, or $\nu_{t}=k-1$.

- Assumes that the effects from the two variables are additive

Example: Two Factor MANOVA

- Two LPCVD deposition tube types, three gas suppliers. Does supplier matter in average particle counts on wafers?
- Experiment: 3 lots on each tube, for each gas; report average \# particles added

MANOVA - Two Factors with Interactions

- May be interaction: not simply additive - effects may depend synergistically on both factors:

- Can split out the model more explicitly...

$$
\begin{aligned}
y_{t q i} & =\mu+\tau_{t}+\beta_{q}+\frac{\omega_{t q}}{}+\epsilon_{t q i} \\
\text { Estimate by: } \hat{y}_{t q} & =\bar{y}+\left(\overline{y_{t}}-\bar{y}\right)+\left(\overline{y_{q}}-\bar{y}\right)+\left(\overline{y_{t q}}-\overline{y_{t}}-\overline{y_{q}}+\bar{y}\right) \\
\omega_{t q} & =\text { interaction effects }=\left(\overline{y_{t q}}-\overline{y_{t}}-\overline{y_{q}}+\bar{y}\right) \\
\tau_{t}, \beta_{q} & =\text { main effects }
\end{aligned}
$$

MANOVA Table - Two Way with Interactions

| source of
 variation | sum of
 squares | degrees
 of
 freedom |
| :---: | :---: | :---: | mean square $\quad F_{0} \quad \operatorname{Pr}\left(F_{0}\right)$

| Between levels
 of factor $1(\mathrm{~T})$ |
| :---: |$\quad k S_{T} \quad s_{T}^{2} \quad s_{T}^{2} / s_{E}^{2} \quad$ table

| Between levels
 of factor 2 (B) | $S S_{B}$ | $n-1$ | s_{B}^{2} | s_{B}^{2} / s_{E}^{2} |
| :---: | :---: | :---: | :---: | :---: | table

Within Groups
(Error) $\quad S S_{E} \quad n k(m-1) \quad s_{E}^{2}$

Total about
the grand
average

$$
S S_{D} \quad n k m-1
$$

Measures of Model Goodness - \mathbf{R}^{2}

- Goodness of fit - R^{2}
- Question considered: how much better does the model do than just using the grand average?

$$
R^{2}=\frac{S S_{T}}{S S_{D}}
$$

- Think of this as the fraction of squared deviations (from the grand average) in the data which is captured by the model
- Adjusted R ${ }^{2}$
- For "fair" comparison between models with different numbers of coefficients, an alternative is often used

$$
R_{\mathrm{adj}}^{2}=1-\frac{S S_{R} / \nu_{R}}{S S_{D} / \nu_{D}}=1-\frac{s_{R}^{2}}{s_{D}^{2}}
$$

- Think of this as (1 - variance remaining in the residual). Recall $v_{R}=v_{D}-v_{T}$

Regression Fundamentals

- Use least square error as measure of goodness to estimate coefficients in a model
- One parameter model:
- Model form
- Squared error
- Estimation using normal equations
- Estimate of experimental error
- Precision of estimate: variance in b
- Confidence interval for β
- Analysis of variance: significance of b
- Lack of fit vs. pure error
- Polynomial regression

Least Squares Regression

- We use least-squares to estimate coefficients in typical regression models
- One-Parameter Model:
$y_{i}=\beta x_{i}+\epsilon_{i}, \quad i=1,2, \ldots, n ; \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$
$\hat{y_{i}}=b x_{i}$

- Goal is to estimate β with "best" b
- How define "best"?
- That b which minimizes sum of squared error between prediction and data
$S S(\hat{\beta})=\sum_{i=1}^{n}\left(y_{i}-\hat{y_{i}}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta} x_{i}\right)^{2}$
- The residual sum of squares (for the best estimate) is

$S S_{\text {min }}=\sum_{i=1}^{n}\left(y_{i}-b x_{i}\right)^{2}=S S_{R}$

Least Squares Regression, cont.

- Least squares estimation via normal equations
- For linear problems, we need not calculate $\operatorname{SS}(\beta)$; rather, direct solution for b is possible
- Recognize that vector of residuals will be normal to vector of x values at the least squares estimate

$$
\begin{aligned}
\sum(y-\hat{y}) x & =0 \\
\sum(y-b x) x & =0 \\
\sum x y & =\sum b x^{2} \\
& \Rightarrow b=\frac{\sum x y}{\sum x^{2}}
\end{aligned}
$$

- Estimate of experimental error
- Assuming model structure is adequate, estimate s^{2} of σ^{2} can be obtained:

$$
s^{2}=\frac{S S_{R}}{n-1}
$$

Precision of Estimate: Variance in b

- We can calculate the variance in our estimate of the slope, b :

$$
\begin{array}{cc}
\hat{V}(b)=\frac{s^{2}}{\sum x_{i}^{2}} & \text { s.e. }(b)=\sqrt{\hat{V}(b)} \\
b \pm \text { s.e. }(b)
\end{array}
$$

- Why? $\quad b=\frac{x_{1}}{\sum x^{2}} \cdot y_{1}+\frac{x_{2}}{\sum x^{2}} \cdot y_{2}+\cdots \frac{x_{n}}{\sum x^{2}} \cdot y_{n}$

$$
=\overline{a_{1}} y_{1}+a_{2} y_{2}+\cdots+a_{n} y_{n}
$$

$$
V(b)=\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \sigma^{2}
$$

$$
=\left[\left(\frac{x_{1}}{\sum x^{2}}\right)^{2}+\cdots+\left(\frac{x_{n}}{\sum x^{2}}\right)^{2}\right] \sigma^{2}
$$

$$
\begin{aligned}
& =\frac{\sum x^{2}}{\left(\sum_{\alpha^{2}} x^{2}\right.} \sigma^{2} \\
& =\frac{\sum^{2} x^{2}}{\sum}
\end{aligned}
$$

Confidence Interval for β

- Once we have the standard error in b, we can calculate confidence intervals to some desired ($1-\alpha$) 100% level of confidence

$$
\frac{b-\beta}{\text { s.e. }(b)} \sim t \quad \Rightarrow \quad \beta=b \pm t_{\alpha / 2} \cdot \text { s.e.(b) }
$$

- Analysis of variance
- Test hypothesis: $H_{0}: \beta=b=0$
- If confidence interval for β includes 0 , then β not significant
- Degrees of freedom (need in order to use t distribution)

$$
\begin{aligned}
\sum y_{i}^{2} & =\sum \hat{y}_{i}^{2}+\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
n & =p+n-p \\
\mathrm{p} & =\# \text { parameters estimated } \\
& \text { by least squares }
\end{aligned}
$$

Example Regression

Lack of Fit Error vs. Pure Error

- Sometimes we have replicated data
- E.g. multiple runs at same x values in a designed experiment
- We can decompose the residual error contributions

$$
S S_{R}=S S_{L}+S S_{E}
$$

Where

$S S_{R}=$ residual sum of squares error
$S S_{L}=$ lack of fit squared error
$S S_{E}=$ pure replicate error

- This allows us to TEST for lack of fit
- By "lack of fit" we mean evidence that the linear model form is inadequate

$$
\frac{s_{L}^{2}}{s_{E}^{2}} \sim F_{\nu_{L}, \nu_{E}}
$$

Regression: Mean Centered Models

- Model form $y=\alpha+\beta(x-\bar{x})$
- Estimate by $\hat{y}=a+b(x-\bar{x}), \quad\left(y_{i}-\hat{y}_{i}\right) \sim \mathrm{N}\left(0, \sigma^{2}\right)$

Minimize $S S_{R}=\sum_{i=1}^{k}\left(y_{i}-\hat{y}_{i}\right)^{2}$ to estimate α and β

$$
\begin{array}{cc}
a=\bar{y} & b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
\mathrm{E}(a)=\alpha & \mathrm{E}(b)=\beta \\
\operatorname{Var}(a)=\operatorname{Var}\left[\frac{\sum y_{i}}{k}\right]=\frac{\sigma^{2}}{k} & \operatorname{Var}(b)=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{array}
$$

Regression: Mean Centered Models

- Confidence Intervals

$$
\begin{aligned}
\hat{y}_{i} & =\bar{y}+b\left(x_{i}-\bar{x}\right) \\
\operatorname{Var}\left(\hat{y}_{i}\right) & =\operatorname{Var}(\bar{y})+\left(x_{i}-\bar{x}\right)^{2} \operatorname{Var}(b) \\
& =\frac{s^{2}}{n}+\frac{s^{2}\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=s_{\hat{y}_{i}}^{2}
\end{aligned}
$$

- Our confidence interval on y widens as we get further from the center of our data!

$$
\hat{y}_{i} \pm t_{\alpha / 2} \cdot s_{\hat{y}_{i}}
$$

Polynomial Regression

- We may believe that a higher order model structure applies. Polynomial forms are also linear in the coefficients and can be fit with least squares

$$
\eta=\beta_{0}+\beta_{1} x+\beta_{2} x^{2} \quad \text { Curvature included through } \mathrm{x}^{2} \text { term }
$$

- Example: Growth rate data

Regression Example: Growth Rate Data

Growth Rate Data		
$\left.\begin{array}{\|c\|c\|c\|}\hline \begin{array}{c}\text { Observation } \\ \text { Number }\end{array} & \begin{array}{c}\text { Amount of Supplement } \\ \text { (Grams) } x\end{array} & \begin{array}{c}\text { Growth Rate } \\ \text { (Coded units) y }\end{array} \\ \hline 1 & 10 \\ 2 & 10\end{array}\right\}$	73	
3	15	78

Image by MIT OpenCourseWare.

Bivariate Fit of y Byx

——Fit Mean
——Linear Fit
__Polynomial Fit Degree=2

- Replicate data provides opportunity to check for lack of fit

Growth Rate - First Order Model

- Mean significant, but linear term not
- Clear evidence of lack of fit

Source	Sum of squares	Degrees of freedom	Mean square
Model	$\mathrm{S}_{\mathrm{M}}=67,428.6\left\{\begin{array}{l}\text { mean 67,404.1 } \\ \text { extra for linear 24.5 }\end{array}\right.$	$2\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	$67,404.1$ 24.5
Residual $\left\{\begin{array}{l}\text { lack of fit } \\ \text { pure error }\end{array}\right.$	$\mathrm{S}_{\mathrm{R}}=686.4\left\{\begin{array}{l}\mathrm{S}_{\mathrm{L}}=659.40 \\ \mathrm{~S}_{\mathrm{E}}=27.0\end{array}\right.$	$8\left\{\begin{array}{l}4 \\ 4\end{array}\right.$	$85.8\left\{\begin{array}{r}164.85 \text { ratio }=24.42 \\ 6.75\end{array}\right.$
Total	$\mathrm{S}_{\mathrm{T}}=68,115.0$	10	

Image by MIT OpenCourseWare.

Growth Rate - Second Order Model

- No evidence of lack of fit
- Quadratic term significant

Source	Sum of squares	Degrees of freedom	Mean square
Model	$\mathrm{S}_{\mathrm{M}}=68,071.8\left\{\begin{array}{l}\text { mean 67,404.1 } \\ \text { extra for linear 24.5 } \\ \text { extra for quadratic } 643.2\end{array}\right.$	$3\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$	$67,404.1$ 24.5 643.2
Residual	$\mathrm{S}_{\mathrm{R}}=43.2\left\{\begin{array}{l}\mathrm{S}_{\mathrm{L}}=16.2 \\ \mathrm{~S}_{\mathrm{E}}=27.0\end{array}\right.$	$7\left\{\begin{array}{l}3 \\ 4\end{array}\right.$	$\left\{\begin{array}{l}5.40 \\ 6.75\end{array}\right.$
ratio $=0.80$			
Total	$\mathrm{S}_{\mathrm{T}}=68,115.0$	10	

Image by MIT OpenCourseWare.

Polynomial Regression In Excel

- Create additional input columns for each input
- Use "Data Analysis" and "Regression" tool

x	$x^{\wedge} 2$	y
10	100	73
10	100	78
15	225	85
20	400	90
20	400	91
25	625	87
25	625	86
25	625	91
30	900	75
35	1225	65

Regression Statistics						
Multiple R	0.968					
R Square	0.936					
Adjusted R Square	re 0.918					
Standard Error	2.541					
Observations	10					
ANOVA						
	$d f$	SS	MS	F	Significance F	
Regression	2	665.706	332.853	51.555	$6.48 \mathrm{E}-05$	
Residual	7	45.194	6.456			
Total	9	710.9				
	Coefficients	Standard Error	t Stat	P-value	$\begin{gathered} \text { Lower } \\ 95 \% \end{gathered}$	Upper 95\%
Intercept	35.657	5.618	6.347	0.0004	22.373	48.942
x	5.263	0.558	9.431	3.1E-05	3.943	6.582
$\mathrm{x}^{\wedge} 2$	-0.128	0.013	-9.966	2.2E-05	-0.158	-0.097

Polynomial Regression

Analysis of Variance

Source	DF	Sum of Square	Mean Squar	F Ratio
Model	2	665.70617	332.853	51.5551
Error	7	45.19383	6.45ϵ	Prob $>$ F
C. Total	9	710.90000		$<.0001$

Lack Of Fit

Source	DF	Sum of Square	Mean Squar	F Ratio
Lack Of Fit	3	18.193829	6.0646	0.8985
Pure Error	4	27.000000	6.7500	Prob $>$ F
Total Error	7	45.193829		0.5157
				Max RSq
				0.9620

Summary of Fit

RSquare	0.936427
RSquare Adj	0.918264
Root Mean Sq Error	2.540917
Mean of Response	82.1
Observations (or Sum Wgts)	10

Parameter Estimates

Term	Estimat ϵ	Std Error	t Ratio	Prob $>\|\mathrm{t}\|$
\quad Intercept	35.657437	5.617927	6.35	0.0004
x	5.2628956	0.558022	9.43	$<.0001$
$\mathrm{x}^{*} \mathrm{x}$	-0.127674	0.012811	-9.97	$<.0001$

Effect Tests

Source	Nparm	DF	Sum of Squares	F Ratio	Prob $>$ F
x	1	1	574.28553	88.9502	$<.0001$
x$^{*} x$	1	1	641.20451	99.3151	$<.0001$

Summary

- Comparison of Treatments - ANOVA
- Multivariate Analysis of Variance
- Regression Modeling

Next Time

- Time Series Models
- Forecasting

2.854 / 2.853 Introduction to Manufacturing Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

