Statistical Inference

Lecturer: Prof. Duane S. Boning

Agenda

1. Review: Probability Distributions \& Random Variables
2. Sampling: Key distributions arising in sampling

- Chi-square, t , and F distributions

3. Estimation:

Reasoning about the population based on a sample
4. Some basic confidence intervals

- Estimate of mean with variance known
- Estimate of mean with variance not known
- Estimate of variance

5. Hypothesis tests

Discrete Distribution: Bernoulli

- Bernoulli trial: an experiment with two outcomes

$$
\begin{aligned}
\operatorname{Pr}(\text { success }) & =\operatorname{Pr}(1) \\
\operatorname{Pr}(\text { failure }) & =\operatorname{Pr}(0)
\end{aligned}
$$

- Probability mass function (pmf): $\quad f(x, p)= \begin{cases}p & x=1 \\ 1-p & x=0\end{cases}$

Discrete Distribution: Binomial

- Repeated random Bernoulli trials

$$
f(x, p, n)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2, \ldots, n
$$

where $\binom{n}{x}$ is "n choose $\mathrm{x} "=\frac{n!}{x!(n-x)!} \quad \begin{gathered}\mu=n p \\ \sigma^{2}=n p(1-p)\end{gathered}$
$x \sim B(n, p)$ where \sim reads "is distributed as" a binomial

- n is the number of trials
- p is the probability of "success" on any one trial
- x is the number of successes in n trials

Binomial Distribution

Discrete Distribution: Poisson

$$
f(x, \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!}, \quad x=0,1,2, \ldots
$$

- Mean: $\quad \mu=\lambda$
- Variance: $\sigma^{2}=\lambda$
- Example applications:
- \# misprints on page(s) of a book
- \# transistors which fail on first day of operation
- Poisson is a good approximation to Binomial when n is large and p is small (<0.1)

$$
\mu=\lambda \approx n p
$$

Poisson Distributions

Continuous Distributions

- Uniform Distribution
- Normal Distribution
- Unit (Standard) Normal Distribution

Continuous Distribution: Uniform

- probability density function (pdf) ${ }^{\dagger} \quad f(x)$

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a} & a \leq x<b \\
o & \text { otherwise }
\end{array}\right.
$$

- cumulative distribution function* (cdf) $F(x)$.

$$
\begin{aligned}
& F(x)=\left\{\begin{array}{cl}
0 & x<a \\
\frac{x-a}{b-a} & a \leq x<b \\
1 & x \geq b
\end{array}\right. \\
& x \sim \mathrm{U}(a, b)
\end{aligned}
$$

talso sometimes called a probability distribution function
*also sometimes called a cumulative density function

Standard Questions You Should Be Able To Answer (For a Known cdf or pdf)

- Probability x less than or equal to some value

$$
\operatorname{Pr}\left(x \leq x_{1}\right)=\int_{-\infty}^{x_{1}} f(x) d x=F\left(x_{1}\right)
$$

- Probability x sits within
 some range

$$
\operatorname{Pr}\left(x_{1}<x<x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x=F\left(x_{2}\right)-F\left(x_{1}\right)
$$

Continuous Distribution: Normal (Gaussian)

- pdf $\quad x \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

- cdf

Continuous Distribution: Unit Normal

- Normalization

$$
z=\frac{x-\mu}{\sigma} \quad z \sim \mathrm{~N}(0,1)
$$

- Mean

$$
\mathrm{E}(z)=0
$$

- Variance

$$
\operatorname{Var}(z)=1 \quad \Rightarrow \quad \text { std.dev. }(z)=1
$$

- pdf

$$
\begin{aligned}
f(z) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \\
F(z)=\Phi(z) & =\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} v^{2}} d v
\end{aligned}
$$

- cdf

Using the Unit Normal pdf and cdf

- We often want to talk about "percentage points" of the

$$
\begin{array}{ccc}
z_{\alpha / 2} & = & \Phi^{-1}(\alpha / 2) \\
z_{1-\alpha / 2} & = & -\Phi^{-1}(\alpha / 2) \\
& & \\
z_{0.10} & = & -1.28 \\
z_{0.90} & = & 1.28
\end{array}
$$

Philosophy

The field of statistics is about reasoning in the face of uncertainty, based on evidence from observed data

- Beliefs:
- Distribution or model form
- Distribution/model parameters
- Evidence:
- Finite set of observations or data drawn from a population
- Models:
- Seek to explain data

Moments of the Population vs. Sample Statistics

Population
Sample

$$
\mu=\mu_{x}=\mathrm{E}(x)
$$

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Variance

$$
\sigma^{2}=\sigma_{x x}^{2}=\mathrm{E}\left[\left(x-\mu_{x}\right)^{2}\right] \quad s^{2}=s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- Standard Deviation

$$
\sigma=\sqrt{\sigma^{2}}
$$

$$
s=\sqrt{s^{2}}
$$

- Covariance $\sigma_{x y}^{2}=\mathrm{E}\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]$

$$
=\mathrm{E}(x y)-\mathrm{E}(x) \mathrm{E}(y)
$$

$$
s_{x y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- Correlation Coefficient

$$
\rho_{x y}=\frac{\sigma_{x y}^{2}}{\sigma_{x} \sigma_{y}}=\frac{\operatorname{Cov}(x y)}{\sqrt{\operatorname{Var}(x) \operatorname{Var}(y)}} \quad r_{x y}=\frac{s_{x y}^{2}}{s_{x} s_{y}}
$$

Sampling and Estimation

- Sampling: act of making observations from populations
- Random sampling: when each observation is identically and independently distributed (IID)
- Statistic: a function of sample data; a value that can be computed from data (contains no unknowns)
- average, median, standard deviation

SticiGui: Statistics Tools for Internet and Classroom Instruction with a Graphical User Interface

http://stat-www.berkeley.edu/~stark/SticiGui

Population vs. Sampling Distribution

Population

Sampling and Estimation, cont.

- Sampling
- Random sampling
- Statistic
- A statistic is a random variable, which itself has a sampling distribution
- l.e., if we take multiple random samples, the value for the statistic will be different for each set of samples, but will be governed by the same sampling distribution
- If we know the appropriate sampling distribution, we can reason about the population based on the observed value of a statistic
- E.g. we calculate a sample mean from a random sample; in what range do we think the actual (population) mean really sits?

Sampling and Estimation - An Example

- Suppose we know that the thickness of a part is normally distributed with std.

$$
T \sim N\left(\mu_{\text {unknown }}, 100\right)
$$ dev. of 10 :

- We sample $n=50$ random parts and compute the mean part thickness:

$$
\bar{T}=\frac{1}{n} \sum_{i=1}^{n} T_{i}=113.5
$$

- \quad First question: What is distribution of \bar{T} ?

$$
\bar{T} \sim N(\mu, 2)
$$

$$
\begin{gathered}
\mathrm{E}(\bar{T})=\mu \\
\operatorname{Var}(\bar{T})=\sigma^{2} / n=100 / 50 \\
\text { Normally distributed }
\end{gathered}
$$

- \quad Second question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean?

Estimation and Confidence Intervals

- Point Estimation:
- Find best values for parameters of a distribution
- Should be
- Unbiased: expected value of estimate should be true value
- Minimum variance: should be estimator with smallest variance
- Interval Estimation:
- Give bounds that contain actual value with a given probability
- Must know sampling distribution!

Confidence Intervals: Variance Known

- We know σ, e.g. from historical data
- Estimate mean in some interval to (1- α)100\% confidence

$$
\bar{x}-z_{\alpha / 2} \cdot\left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}
$$

- Remember the unit normal \rightarrow percentage points
- Apply to the sampling distribution for the sample mean

Example, Cont'd

- \quad Second question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean?

Reasoning \& Sampling Distributions

- Example shows that we need to know our sampling distribution in order to reason about the sample and population parameters
- Other important sampling distributions:
- Student-t
- Use instead of normal distribution when we don't know actual variation or σ
- Chi-square
- Use when we are asking about variances
- F
- Use when we are asking about ratios of variances

Sampling: The Chi-Square Distribution

If $x_{i} \sim N(0,1)$ for $i=1,2, \ldots, n$ and $y=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$, then $y \sim \chi_{n}^{2}$ or chi-square with n degrees of freedom.

- Typical use: find distribution of variance when mean is known
- Ex:

$$
\begin{gathered}
x_{i} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \\
\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
\end{gathered}
$$

So if we calculate s^{2}, we can use knowledge of chi-square distribution to put bounds on where we believe the actual (population) variance sits

Note: $\mathrm{E}\left(\chi_{n}^{2}\right)=n$

Sampling: The Student-t Distribution

If $z \sim N(0,1)$ then $\frac{z}{y / k} \sim t_{k}$ with $y \sim \chi_{k}^{2}$ is distributed as a student t with k degrees of freedom.

- Typical use: Find distribution of average when σ is NOT known
- For $k!1, t_{k}!\mathrm{N}(0,1)$
- Consider $x_{i} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$. Then

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

$$
\frac{\bar{x}-\mu}{s / \sqrt{n}}=\frac{\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}}{s / \sigma} \sim \frac{N(0,1)}{\sqrt{\frac{1}{n-1} \chi_{n-1}^{2}}} \sim t_{n-1}
$$

- This is just the "normalized" distance from mean (normalized to our estimate of the sample variance)

Back to our Example

- Suppose we do not know either the variance or the mean in our parts population:

$$
T \sim N\left(\mu, \sigma^{2}\right)=N\left(\mu_{\text {unknown }}, \sigma_{\text {unknown }}^{2}\right)
$$

- We take our sample of size $n=50$, and calculate

$$
\bar{T}=\frac{1}{50} \sum_{i}^{50} T_{i}=113.5 \quad s_{T}^{2}=\frac{1}{49} \sum_{i}^{50}\left(T_{i}-\bar{T}\right)^{2}=102.3
$$

- Best estimate of population mean and variance (std.dev.)?

$$
\hat{\mu}=\bar{T}=113.5 \quad \hat{\sigma}=\sqrt{s_{T}^{2}}=10.1
$$

- If had to pick a range where μ would be 95% of time?

Have to use the appropriate sampling distribution: In this case - the t-distribution (rather than normal distribution)

Confidence Intervals: Variance Unknown

- Case where we don't know variance a priori
- Now we have to estimate not only the mean based on our data, but also estimate the variance
- Our estimate of the mean to some interval with (1- α) 100% confidence becomes

$$
\bar{x}-t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x}+t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}
$$

Note that the t distribution is slightly wider than the normal distribution, so that our confidence interval on the true mean is not as tight as when we know the variance.

Example, Cont'd

- Third question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean - even though we weren't told σ ?

Once More to Our Example

- Fourth question: how about a confidence interval on our estimate of the variance of the thickness of our parts, based on our 50 observations?

Confidence Intervals: Estimate of Variance

$$
\frac{(n-1) s^{2}}{\chi_{\alpha / 2, n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{1-\alpha / 2, n-1}^{2}}
$$

- The appropriate sampling distribution is the Chi-square
- Because χ^{2} is asymmetric, c.i. bounds not symmetric.

Example, Cont'd

- Fourth question: for our example (where we observed $s_{\mathrm{T}}{ }^{2}=102.3$) with $n=50$ samples, what is the 95% confidence interval for the population variance?

Sampling: The F Distribution

If $y_{1} \sim \chi_{u}^{2}$ and $y_{2} \sim \chi_{v}^{2}$, then $R=\frac{y_{1} / u}{y_{2} / v} \sim F_{u, v}$ is an F distribution with u, v degrees of freedom.

- Typical use: compare the spread of two populations
- Example:
$-x \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ from which we sample $x_{1}, x_{2}, \ldots, x_{n}$
$-y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$ from which we sample $y_{1}, y_{2}, \ldots, y_{m}$
- Then

$$
\frac{s_{x}^{2} / \sigma_{x}^{2}}{s_{y}^{2} / \sigma_{y}^{2}} \sim F_{n-1, m-1} \quad \text { or } \quad \frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} \sim \frac{s_{x}^{2}}{s_{y}^{2}} F_{n-1, m-1}
$$

Concept of the F Distribution

- Assume we have a normally distributed population
- We generate two different random samples from the population
- In each case, we calculate a sample variance s_{i}^{2}
- What range will the ratio of these two variances take?
) F distribution
- Purely by chance (due to sampling) we get a range of ratios even though drawing from same population

Example:

- Assume $x \sim N(0,1)$
- Take samples of size $n=20$
- Calculate $\mathrm{s}_{1}{ }^{2}$ and $\mathrm{s}_{2}{ }^{2}$ and take ratio

$$
\frac{s_{1}^{2}}{s_{2}^{2}} \sim F_{19,19}
$$

- 95% confidence interval on ratio
$F_{\frac{\alpha}{2}, 19,19}=F_{0.025,19,19}=2.53$
$F_{1-\frac{\alpha}{2}, 19,19}=$
$F_{0.975,19,19}=0.40$
Large range in ratio!

Hypothesis Testing

- A statistical hypothesis is a statement about the parameters of a probability distribution
- H_{0} is the "null hypothesis"
- E.g. $H_{0}: \quad \mu=\mu_{0}$
- Would indicate that the machine is working correctly
- H_{1} is the "alternative hypothesis"
- E.g. $H_{1}: \mu \neq \mu_{0}$
- Indicates an undesirable change (mean shift) in the machine operation (perhaps a worn tool)
- In general, we formulate our hypothesis, generate a random sample, compute a statistic, and then seek to reject H_{0} or fail to reject (accept) H_{0} based on probabilities associated with the statistic and level of confidence we select

Which Population is Sample x From?

- Two error probabilities in decision:
- Type I error: "false alarm"

$$
\alpha=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)
$$

- Type II error: "miss" $\quad \beta=\operatorname{Pr}\left(\right.$ accept $H_{0} \mid H_{0}$ is false $)$
- Power of test ("correct alarm") $\quad 1-\beta=\operatorname{Pr}\left(\right.$ reject $H_{0} \mid H_{0}$ is false)

- Control charts are hypothesis tests:
- Is my process "in control" or has a significant change occurred?

Summary

1. Review: Probability Distributions \& Random Variables
2. Sampling: Key distributions arising in sampling

- Chi-square, t, and F distributions

3. Estimation: Reasoning about the population based on a sample
4. Some basic confidence intervals

- Estimate of mean with variance known
- Estimate of mean with variance not known
- Estimate of variance

5. Hypothesis tests

Next Time:

1. Are effects (one or more variables) significant?
) ANOVA (Analysis of Variance)
2. How do we model the effect of some variable(s)?
) Regression modeling

2.854 / 2.853 Introduction to Manufacturing Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

