Statistical Inference

Lecturer: Prof. Duane S. Boning

1

Agenda

- 1. Review: Probability Distributions & Random Variables
- 2. Sampling: Key distributions arising in sampling
 - Chi-square, t, and F distributions
- 3. Estimation:

Reasoning about the population based on a sample

- 4. Some basic confidence intervals
 - Estimate of mean with variance known
 - Estimate of mean with variance not known
 - Estimate of variance
- 5. Hypothesis tests

Discrete Distribution: Bernoulli

• Bernoulli trial: an experiment with two outcomes

Pr(success) = Pr(1)Pr(failure) = Pr(0)

• Probability mass function (pmf): $f(x,p) = \begin{cases} p & x = 1 \\ 1-p & x = 0 \end{cases}$

$$\mu = \mathbf{E}[f(x, p)] = 1 \cdot p + 0 \cdot (1 - p) = p$$
$$\sigma^2 = \mathbf{Var}[f(x, p)] = p(1 - p)$$

Discrete Distribution: Binomial

Repeated random Bernoulli trials

$$f(x, p, n) = \binom{n}{x} p^{x} (1-p)^{n-x}, \quad x = 0, 1, 2, ..., n$$

where
$$\begin{pmatrix} n \\ x \end{pmatrix}$$
 is "n choose x" $= \frac{n!}{x!(n-x)!}$ $\mu = np$
 $\sigma^2 = np(1-p)$

 $x \sim B(n,p)$ where \sim reads "is distributed as" a binomial

- *n* is the number of trials
- *p* is the probability of "success" on any one trial
- x is the number of successes in n trials

Binomial Distribution

Discrete Distribution: Poisson

$$f(x,\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, 2, \dots \qquad x \sim P(\lambda)$$

- Mean: $\mu = \lambda$
- Variance: $\sigma^2 = \lambda$
- Example applications:
 - # misprints on page(s) of a book
 - # transistors which fail on first day of operation
- Poisson is a good approximation to Binomial when n is large and p is small (< 0.1)

$$\mu = \lambda \approx np$$

Poisson Distributions

Continuous Distributions

- Uniform Distribution
- Normal Distribution

- Unit (Standard) Normal Distribution

Continuous Distribution: Uniform

probability density function (pdf)[†]

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x < b \\ o & \text{otherwise} \end{cases}$$

• cumulative distribution function* (cdf) F(x)

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

 $x \sim \mathrm{U}(a, b)$

[†]also sometimes called a probability distribution function *also sometimes called a cumulative density function

Standard Questions You Should Be Able To Answer (For a Known cdf or pdf)

• Probability *x* less than or equal to some value

$$\Pr(x \le x_1) = \int_{-\infty}^{x_1} f(x) \, dx = F(x_1)$$

$$\Pr(x_1 < x < x_2) = \int_{x_1}^{x_2} f(x) \, dx = F(x_2) - F(x_1)$$

Continuous Distribution: Normal (Gaussian)

• pdf $x \sim N(\mu, \sigma^2)$

• cdf

Continuous Distribution: Unit Normal

- Normalization $z = \frac{x \mu}{\sigma}$ $z \sim N(0, 1)$
- Mean E(z) = 0
- Variance $Var(z) = 1 \Rightarrow std.dev.(z) = 1$

• pdf
$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

• cdf $F(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}v^2} dv$

Using the Unit Normal pdf and cdf

Philosophy

The field of statistics is about reasoning in the face of uncertainty, based on evidence from observed data

- Beliefs:
 - Distribution or model form
 - Distribution/model parameters
- Evidence:
 - Finite set of observations or data drawn from a population
- Models:
 - Seek to explain data

Moments of the Population vs. Sample Statistics

Sampling and Estimation

- Sampling: act of making observations from populations
- Random sampling: when each observation is identically and independently distributed (IID)
- Statistic: a function of sample data; a value that can be computed from data (contains no unknowns)
 - average, median, standard deviation

SticiGui: Statistics Tools for Internet and Classroom Instruction with a Graphical User Interface

http://stat-www.berkeley.edu/~stark/SticiGui

Population vs. Sampling Distribution

Sampling and Estimation, cont.

- Sampling
- Random sampling
- Statistic
- A statistic is a random variable, which itself has a sampling distribution
 - I.e., if we take multiple random samples, the value for the statistic will be different for each set of samples, but will be governed by the same sampling distribution
- If we know the appropriate sampling distribution, we can **reason** about the population based on the observed value of a statistic
 - E.g. we calculate a sample mean from a random sample; in what range do we think the actual (population) mean really sits?

20

- **Sampling and Estimation An Example**
- Suppose we know that the thickness of a part is normally distributed with std. dev. of 10:
- We sample *n* = 50 random parts and compute the mean part thickness:
- First question: What is distribution of \overline{T} ?

$$\bar{T} \sim N(\mu, 2)$$

• Second question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean?

$$T \sim N(\mu_{\text{unknown}}, 100)$$

$$\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i = 113.5$$

$$\begin{split} \mathbf{E}(\bar{T}) &= \mu\\ \mathrm{Var}(\bar{T}) &= \sigma^2/n = 100/50\\ \mathrm{Normally\ distributed} \end{split}$$

Estimation and Confidence Intervals

- Point Estimation:
 - Find best values for parameters of a distribution
 - Should be
 - Unbiased: expected value of estimate should be true value
 - Minimum variance: should be estimator with smallest variance
- Interval Estimation:
 - Give bounds that contain actual value with a given probability
 - Must know sampling distribution!

Confidence Intervals: Variance Known

- We know σ , e.g. from historical data
- Estimate mean in some interval to $(1-\alpha)100\%$ confidence

$$\bar{x} - z_{\alpha/2} \cdot \underbrace{\sigma}_{\sqrt{n}} \leq \mu \leq \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$
• Remember the unit normal percentage points
• Apply to the sampling distribution for the sample mean
$$\sum_{z=-1.28}^{\alpha/2} -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

Example, Cont'd

• Second question: can we use knowledge of \overline{T} distribution to reason about the actual (population) mean μ given observed (sample) mean?

Reasoning & Sampling Distributions

- Example shows that we need to know our sampling distribution in order to reason about the sample and population parameters
- Other important sampling distributions:
 - Student-t
 - Use instead of normal distribution when we don't know actual variation or $\boldsymbol{\sigma}$
 - Chi-square
 - Use when we are asking about variances
 - F
 - Use when we are asking about ratios of variances

Sampling: The Chi-Square Distribution

If $x_i \sim N(0,1)$ for i = 1, 2, ..., n and $y = x_1^2 + x_2^2 + \cdots + x_n^2$, then $y \sim \chi_n^2$ or chi-square with n degrees of freedom.

- Typical use: find distribution of variance when mean is known
- Ex:

$$x_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

So if we calculate *s*², we can use knowledge of chi-square distribution to put bounds on where we believe the actual (population) variance sits

Sampling: The Student-t Distribution

If $z \sim N(0,1)$ then $\frac{z}{y/k} \sim t_k$ with $y \sim \chi_k^2$ is distributed as a student t with k degrees of freedom.

- Typical use: Find distribution of average when σ is NOT known
- For $k \mid 1, t_k \mid N(0,1)$ $\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$
- Consider $x_i \sim N(\mu, \sigma^2)$. Then ullet

$$\frac{\bar{x}-\mu}{s/\sqrt{n}} = \frac{\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}}{s/\sigma} \sim \frac{N(0,1)}{\sqrt{\frac{1}{n-1}\chi_{n-1}^2}} \sim t_{n-1}$$

• This is just the "normalized" distance from mean (normalized to our estimate of the sample variance)

Back to our Example

 Suppose we do not know either the variance or the mean in our parts population:

$$T \sim N(\mu, \sigma^2) = N(\mu_{\text{unknown}}, \sigma_{\text{unknown}}^2)$$

• We take our sample of size n = 50, and calculate

$$\bar{T} = \frac{1}{50} \sum_{i}^{50} T_i = 113.5$$
 $s_T^2 = \frac{1}{49} \sum_{i}^{50} (T_i - \bar{T})^2 = 102.3$

- Best estimate of population mean and variance (std.dev.)? $\hat{\mu} = \bar{T} = 113.5$ $\hat{\sigma} = \sqrt{s_T^2} = 10.1$
- If had to pick a range where μ would be 95% of time?

Have to use the appropriate sampling distribution: In this case – the t-distribution (rather than normal distribution)

Confidence Intervals: Variance Unknown

- Case where we don't know variance a priori
- Now we have to estimate not only the mean based on our data, but also estimate the variance
- Our estimate of the mean to some interval with (1-α)100% confidence becomes

$$\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}$$

Note that the t distribution is slightly wider than the normal distribution, so that our confidence interval on the true mean is not as tight as when we know the variance.

Example, Cont'd

• Third question: can we use knowledge of \overline{T} distribution to reason about the actual (population) mean μ given observed (sample) mean – even though we weren't told σ ?

Once More to Our Example

• Fourth question: how about a confidence interval on our estimate of the **variance** of the thickness of our parts, based on our 50 observations?

Confidence Intervals: Estimate of Variance

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

- The appropriate sampling distribution is the Chi-square
- Because χ^2 is asymmetric, c.i. bounds not symmetric.

Example, Cont'd

• Fourth question: for our example (where we observed $s_T^2 = 102.3$) with n = 50 samples, what is the 95% confidence interval for the population variance?

Sampling: The F Distribution

If $y_1 \sim \chi_u^2$ and $y_2 \sim \chi_v^2$, then $R = \frac{y_1/u}{y_2/v} \sim F_{u,v}$ is an F distribution with u, v degrees of freedom.

- Typical use: compare the spread of two populations
- Example:
 - $x \sim N(\mu_x, \sigma_x^2)$ from which we sample $x_1, x_2, ..., x_n$
 - $y \sim N(\mu_y, \sigma^2_y)$ from which we sample $y_1, y_2, ..., y_m$ - Then

$$\frac{s_x^2 / \sigma_x^2}{s_y^2 / \sigma_y^2} \sim F_{n-1,m-1} \quad \text{or} \quad \frac{\sigma_y^2}{\sigma_x^2} \sim \frac{s_x^2}{s_y^2} F_{n-1,m-1}$$

Concept of the F Distribution

- Assume we have a normally distributed population
- We generate two different random samples from the population
- In each case, we calculate a sample variance s²
- What range will the ratio of these two variances take?
) F distribution
- Purely by chance (due to sampling) we get a range of ratios even though drawing from same population

Example:

- Assume *x* ~ N(0,1)
- Take samples of size n = 20
- Calculate s_1^2 and s_2^2 and take ratio

$$\frac{s_1^2}{s_2^2} \sim F_{19,19}$$

• 95% confidence interval on ratio

$$F_{\frac{\alpha}{2},19,19} = F_{0.025,19,19} = 2.53$$
$$F_{1-\frac{\alpha}{2},19,19} = F_{0.975,19,19} = 0.40$$
Large range in ratio!

Hypothesis Testing

- A statistical hypothesis is a statement about the parameters of a probability distribution
- H_0 is the "null hypothesis"
 - **E.g.** $H_0: \mu = \mu_0$
 - Would indicate that the machine is working correctly
- *H*₁ is the "alternative hypothesis"
 - E.g. $H_1: \mu \neq \mu_0$
 - Indicates an undesirable change (mean shift) in the machine operation (perhaps a worn tool)
- In general, we formulate our hypothesis, generate a random sample, compute a statistic, and then seek to reject H₀ or fail to reject (accept) H₀ based on probabilities associated with the statistic and level of confidence we select

Which Population is Sample *x* From?

- Control charts are hypothesis tests:
 - Is my process "in control" or has a significant change occurred?

Summary

- 1. Review: Probability Distributions & Random Variables
- 2. Sampling: Key distributions arising in sampling
 - Chi-square, t, and F distributions
- 3. Estimation: Reasoning about the population based on a sample
- 4. Some basic confidence intervals
 - Estimate of mean with variance known
 - Estimate of mean with variance not known
 - Estimate of variance
- 5. Hypothesis tests

Next Time:

- Are effects (one or more variables) significant?
) ANOVA (Analysis of Variance)
- 2. How do we model the *effect* of some variable(s)?) Regression modeling

2.854 / 2.853 Introduction to Manufacturing Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.