
MIT OpenCourseWare 
http://ocw.mit.edu
 
 
 
MAS.110 Fundamentals of Computational Media Design 
Fall 2008 
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.  
 

http://ocw.mit.edu/
http://ocw.mit.edu/terms


  CsoundXO 
 

A Manual for Developers of 
 

Activities 
 

for the 
 

One Laptop Per Child XO 
 

who wish to use 
 

Audio and Musical Sounds 
 

in their applications 
 
 

Version 1.01 
 

Barry Vercoe 
Media Lab 

MIT 
 

Nov 4, 2008 
  
 

- i - 



 
 
 

PART ONE: THE PYTHON API ENVIRONMENT 
 
 
 

Contents         
 
1. A Beginning Tutorial 
 
 Two Cooperating Worlds      1 
 
2.  The Python – Csound API      4 
 
3.  Graphic Control using PYGTK     11 
 
4.  The Csound Environment 

 
The Orchestra File       12 

 The Score File       14 
 Frequencies within the Orchestra     16 

- ii - 



1.  A Beginning Tutorial 
 
Two Cooperating Worlds 
 
Csound on the XO laptop consists of two parts: 
 

1. a User Interface written in Python, with real-time interaction and graphics support 
2. a Csound Audio-processing Engine, pre-compiled and written in the language C. 

 
This introduction shows how the world of a Csound Orchestra/Score performance can be 
imbedded in the world of Python, and how the two worlds can interact in real-time applications. 
 
Example 1. The following Python program contains an orchestra and score as imbedded 
strings. 
 

import CsoundAPI 
from time import sleep 
 
orchestra = “””    ; begin an orchestra string within triple quotes 
 sr = 32000   ; the audio signal sampling rate 
 kr = 1000   ; the control signal rate 
 ksmps = 32   ; the number of audio samples in a control period 
gisine ftgen 0, 0, 1024, 10, 1 ; draw a sine wave in 1024 words using Gen 10 
 
 instr 1   ; define instrument number 1 
a1 oscil 8000, 440, gisine ; make a continuous sine wave, amp 8000, freq 440 Hz 
 out a1   ; send this sine wave a1 to the audio output device 
 endin 
 
  instr 2   ; define a second instrument 
a1 oscil 8000, 550, gisine ; as above, but at frequency 550 Hz 
 out a1 
 endin 
 “”” 
score = “””    ; now begin a score string (of what to play and when) 
i1  0  3     ; play instrument 1 at time 0 for 3 seconds 
i2  5  3     ; play instrument 2 at time 5 for 3 seconds 
e     ; end of the score 
“”” 
address = “localhost” 
port = 7000    # define some parameters 
     # create a connection socket, and call it csound 
csound = CsoundAPI.CsoundAPI(address, port, is_gtk=False) 
csound.newInstance()   # allocate a Csound instance at the end of this socket 
 
csound.sendOrcStr(orchestra)  # send our orchestra string to this new instance 
csound.sendScoStr(score)  # also send it our score string 
csound.sendPrep()   # tell the instance to load both and get ready to play 
csound.sendPlay()   # tell the instance to start playing 
sleep(10)    # take a rest while the instance is performing 
csound.close()    # and we are done 
 

- 1 - 



Example 2.  This is similar to the above, but with the addition of control signals in the orchestra 
and additional parameter fields in the score.  This will draw attention to Orchestra Syntax. 
 

import CsoundAPI 
from time import sleep 
 
orchestra = “”” 
 sr = 32000   ; audio sampling rate 
 kr = 1000   ; etc … 
 ksmps = 32   ;  … all making up the Orchestra Header section 
gisine ftgen 0, 0, 1024, 10, 1 
 
 instr 1   ; instrument 1 
a1 oscil p4, p5, gisine  ; amp and frequency now derive from score p-fields 
 out a1 
 endin 
 
  instr 2   ; instrument 2 
k1 lfo 2, gisine, 3  ; low frequency oscillator:  freq 2 Hz after 3 secs delay 
a1 oscil p4, p5 + k1*10, gisine ; add k1 (a control rate signal) to the score frequency 
 out a1   ; and listen to the result 
 endin 
 “”” 
score = “”” 
i1  0  3  8000  440   ; specify the amp and frequency in parameters 4 and 5 
i2  5  5  8000  550 
e 
“”” 
 … the remaining Python part is the same as Example 1. 

 
 
The Orchestra Syntax is quite simple, each line consisting of three main parts: 
1. Result cell 2. Opcode (verb) defining the operation  3. Input parameters separated by 
commas 
 
Result cells can be of 3 kinds:  I-time cells, K-rate cells, Audio-rate cells – where each kind is 
identified by the first letter of its name, ‘i’, ‘k’, or ‘a’.  These cells are locally scoped within the 
instr/endin delimiters, meaning that a1 of instrument 1 is different from a1 of instrument 2, and 
k1 of instrument 2 is unknown to instrument 1.  There is however an additional qualifier ‘g’ that 
can make any cell global and thus visible to all instruments.  We see an example of this in the 
orchestra Header statements, where the isine output name from ftgen becomes a global gisine, 
and is thus reachable by all instruments. 
 
Note: We are not required to imbed orchestra and score as strings in the Python control program.  
They can be stored as named files within the local file system.  If we were to store an orchestra 
and score in a subdirectory X, then the commands sendOrcStr(name) and sendScoStr(name) 
would be replaced by sendOrcNam(“X/newname.orc”) and sendScoNam(“X/newname.sco”) 
where X is the pathname of a directory of files.  Although strings imbedded in Python script are 
nicely interactive, larger orchestras and scores are often best maintained as independent files, 
called up by Python whenever needed. 
 
Example 3.  This shows how Python can modify the orchestra in the middle of a performance.  
The vehicle here is the alias attribute, which serves to expose an orchestra variable to the outside 
world.  Result variables (above), whether local or global, are known only within the orchestra 

- 2 - 



since the Prep-time language translator and loader will hide them away in internal memory. 
Csound’s alias directive allows Python’s getAlias and setAlias to read and write to that memory 
at any time.   
 

import CsoundAPI 
from time import sleep 
 
orchestra = “”” 
 sr = 32000   ; audio signal sampling rate 
 kr = 1000   ; the control signal rate 
 ksmps = 32 
gisine ftgen 0, 0, 1024, 10, 1 
gkfrq1 init 440   ; create two global orch cells, initial values 440 and 550 
gkfrq2 init 550 
 alias gkfrq1, “inifreq1” ; expose them to the outer Python program 
 alias gkfrq2, “inifreq2” 
 
 instr 1   ; instrument 1 
k1 lfo 3, gisine, 5  ; low frequency oscil:  delay 5, then a 3 Hz vibrato 
a1 oscil p4, gkfrq1+k1*9, gisine ; initial gkfrq of 440 (+ 0) is modifiable by Python 
 out a1 
 endin 
 
  instr 2   ; instrument 2 
k1 lfo 3, gisine, 5  ; low frequency oscil:  delay 5, then a 3 Hz vibrato 
a1 oscil p4, gkfrq2+k1*8, gisine ; initial gkfrq of 500 (+ 0) is modifiable by Python 
 out a1 
 endin 
 “”” 
score = “””    ; score (of what to play when) 
i1  0  7 8000     ; play instr 1 at time 0 for 7 seconds 
i2  0  7 8000    ; play instr 2 at time 0 for 7 seconds 
e     ; end of the score 
“”” 
 
address = “localhost” 
port = 7000    # define some parameters 
cs = CsoundAPI.CsoundAPI(address, port, is_gtk=False) # create a Connection Socket, call it cs  
cs.newInstance()   # allocate a Csound instance at the end of  this socket 
sleep(1) 
cs.sendOrcStr(orchestra)  # send it our orchestra string 
cs.sendScoStr(score)   #   and our score string 
cs.sendPrep()    # load these both and get ready to play 
cs.sendPlay() 
sleep(2)    # after 2 seconds of hearing 440 and 550 Hz 
cs.setAlias(“inifreq1”, 366)  #   change the 440 Hz to 366 
sleep(1)    # after 1 more second 
cs.setAlias(“inifreq2”, 619)  #   change the 550 Hz to 619 
sleep(5)    # listen for the vibrato to begin after 2 more secs 
cs.close() 

 
Since it would be very tiresome to score all music using only frequencies, there are several tools 
that use note names, pitch classes, and MIDI codes, as we’ll see later.  Meanwhile we will next 
look more closely at the wide range of Python commands that drive a Csound Orchestra. 

- 3 - 



 
2.  The Python - Csound API 

 
 
Csound is controlled and managed via a set of Python Bindings which have entry into a running 
Csound environment.  When Csound is first launched it passes control to the Csound Server, 
which will open a socket on a fixed port and then wait for a Python program to do the same: 
 
  Csound server awaiting Python connection … 
 
If Python is then launched with the same port number, the two will establish a formal 
connection.   
 
This is a connection to a base instance of Csound called the Csound Server, which resides on 
every machine that has a valid Csound executable.  A Csound Server is responsible for basic 
functions such as talking to that machine’s file system and sending audio to its external devices.  
The Server instance does not do any sound generation itself, but delegates this to other allocated 
instances on that machine. 
 
All allocated instances are created at the request of Python which can continue to send 
commands (via the Server) to each individual instance.  Python can also tell these instances to 
communicate with each other.  In this way a Python host can serve either as a simple Master, or 
as a Configuration Editor that defines the topology of cooperating Csound instances on the same 
or different machines. 
 
Communication between Python and a Csound Server is via one or more Connection Sockets.  
Each socket is retained by the Server in a Client structure that remains intact while Csound 
instances come and go.  A close command to a socket will remove that socket and any instance it 
has been supporting.  A serverShutdown command will remove all current sockets and shutdown 
the Csound Server itself. 
 
Most API commands have arguments, either a character string or a numerical value, passed to 
the target Server.  Some API commands also request some form of response that is returned to a 
user-defined callback method.  This is user-defined in Python, and may be a simple print or a 
more complex plot method.  For plot and other graphic methods, enable the PyGTK graphics 
package by setting is_gtk=True in the following command.   
 
cs = CsoundAPI.CsoundAPI(address, port, is_gtk=False) 
set up a connection socket to the addressed Csound Server and give it a unique name (here “cs”).  
A Python host program may set up several Connection Sockets to the same or different Servers, 
each uniquely addressable by that name.  Servers may be on the same or different machine as 
Python, their location being specified by the address argument. 
 
cs.newInstance() 
allocate a new Csound instance that can be reached through the named Connection Socket.  
Since a socket can address only one instance, the socket name can also be considered the name 
of the Csound instance.  Each allocated instance is initially empty, and its performance will need 
an Orchestra plus a Score or Midifile sent via the named socket.  If a newInstance command is 
sent more than once on the same socket, a fresh instance will be allocated and the previous one 
destroyed.  See also sendDestroy. 
 
cs.setOrcNam(“…”) 
tell this instance it has access to an orchestra file named “…”.  May need a complete path name. 

- 4 - 



 
cs.setScoNam(“…”) 
tell this instance it has access to a score file named “…”.  May need a complete path name. 
 
cs.setMidiNam(“…”) 
tell this instance it has access to a Midi file named “…”.  May need a complete path name. 
 
cs.sendOrcStr(strname) 
send the Python-defined string strname to serve as the orchestra for this instance.  Every instance 
must have an orchestra, delivered either as a string or a file name. 
 
cs.sendScoStr(strname) 
send the Python-defined string strname to serve as the score for this instance.  Having a score is 
optional, since orchestra instruments can be invoked by realtime LineInput events (below). 
 
cs.setAlias(aliasname, value) 
locate the orchestra variable that has been given this aliasname, and send it this new value. 
 
cs.getAlias(aliasname, callbackname) 
locate the orchestra variable with this aliasname and report its current value back to Python.  
This command requires a user-defined callback method that will handle the response. 
 
cs.setVolume(value) 
set the output Volume level of this instance to value.  The default value is 1.0 (no level change). 
 
cs.getVolume(callbackname) 
report the current setting of Volume in the named instance.  Requires a callback method. 
 
cs.setMasVol(value) 
set the Master Volume level to value.  This affects all instances.  The default value is 1.0 
 
cs.getMasVol(callbackname) 
report the current setting of the Master Volume.  Requires a callback method. 
 
cs.setTempo(value) 
set the performance Tempo of the current score to value.  In the absence of a Tempo statement in 
the score, the default tempo is 60 beats / minute.  i.e. scores measure time in seconds by default.  
This command will override that and perform the score at this new tempo.  When the score has 
been pre-processed by a Tempo statement, both of these time-warpings will be in effect. 
 
cs.getTempo(callbackname) 
report the current performance tempo of the current score.  Requires a callback method. 
 
cs.setMidiSpeed(value) 
set the Midi  performance speed to value.  A Midi file has an internal tempo which is often hard 
to assess.  This command will modify that tempo by the factor value.  The default factor is 1.0 
 
cs.getMidiSpeed(callbackname) 
report the current speed factor in this Midifile performance.  Requires a callback method. 
 
cs.setMsgLevel(value) 
set the instance msg level to value.  All printf statements in Csound are accorded an importance 
factor, with Network and Error messages being highest and general info and output amplitudes 
being lowest.  Low level amplitude messages can be useful during instrument development, but 

- 5 - 



during real-time performance of well-formed orchestras this detail will steal CPU cycle time.  
The Message level is set by a bit-wise OR of unique binary values (here in decimal format): 
 
  Network messages  1 
  Error messages  2 
  Warning messages  4 
  Performance errors  8 
  API messages   16 
  Orchestra messages  32 
  General information  64 
  Note segment amplitudes 128 
 
The default message level is the bit-wise OR of all the above, which is 255.  A lower message 
level of say 63 will show instrument allocations but not segment amplitudes, etc. A message 
level of 7 is a good one to work with.  Use 0 when you are certain your orchestra is behaving 
perfectly. 
   
cs.getMsgLevel(callbackname) 
report the current Message level for the current instance.  Requires a callback method. 
 
cs.setDisplays(value) 
set the bit that causes stored waveforms to be displayed on creation.  The value 1 = ON, and the 
value 0 = OFF.  The default value is 1 (displays ON). 
 
cs.setGraphics(value) 
recast graphic displays into ascii characters (which will work on all terminals).  The value 1 = 
ON, the value 0 = OFF.  The default value is 1 (ascii graphics ON). 
 
cs.sendBeat() 
send a Beat event to the current performing score.  This event will cause all score times to be 
interpreted as Beats.  Using a rhythmic succession of these commands the user can effectively 
“conduct” a performance.  Sometimes in real conducting the “beat” may be subdivided into 
groups of 2 or 3, or sometimes clustered into higher groupings of 2 or 3.  This input interpreter 
will soon figure out if you are doing that, and respond accordingly. 
 
cs.enterBeatInputMode() 
suspend normal ascii input on your terminal and interpret all keystrokes as conductor Beats (as 
in the above).  Type ‘q’ to exit from this mode. 
  
cs.sendLinevt(“…”) 
send a single score event from the terminal.  Any scoreline appropriate for a running orchestra 
can be input as a realtime event.  For instance in Example 1 above, the input 

csound.sendLinevt(“i1 0 3”) 
would immediately duplicate the first note played by the score, meaning that an entire score 
could be replaced by sendLinevt commands.  Note however that only a 0 in pfield 2 (start time) 
will launch a note immediately.  The input 
 csound.sendLinevt(“i1 3 5”) 
will tell the orchestra to generate this event 3 seconds from NOW (you will hear this).  The 
duration (given by pfield 3) will be measured from whenever this event actually occurs. 
Line events are stored inside Csound in a Linevent buffer, from which events are retrieved in 
time-sequenced order.  The Linevent buffer can be cleared by the clearLines command (below). 
[Note however that Line events can also originate from within a Csound instance (or Equivalent) 
and be redirected to another instance or Equivalent with whom it has privileged communication 
(see the IIS server and IIC client sockets below).] 

- 6 - 



 
cs.enterLineInputMode() 
suspend normal Python input on your terminal and interpret all lines as Line events (see above).  
This is a more efficient means of input than the above, and the same rule for pfield 2 will apply.  
Type ‘exit’ to exit from this mode. 
 
cs.clearLines() 
clear the current Linevent buffer. 
 
cs.setUploadBeat(value, callbackname) 
tell the current instance to notify the Python host each time new a Beat is encountered in the 
performing score or midifile.  For score with simple beats, set value to 1;  for scores with 
compound beats (eg midifiles sometimes encode triple rhythms in groups of 2) set value to 1.5 or 
some other suitable number.  Presumes a Python callback method on what to do on receiving an 
uploaded Beat signal. 
 
cs.sendSVOpen () 
tell the current instance to open an Inter-Instance Server (IIS) socket, allowing it to accept 
connections from the IIC sockets (see below) of one or more external instances (or equivalent) 
who wish to communicate privately through a privileged socket.  IIS and IIC sockets are separate 
from Python communication sockets.  They are Csound-to-Csound or Csound-to-Equivalent 
privileged communications which do not go through the Python environment, but carry out high-
speed data transfers between instances and thus avoid the time-jitter that Python can induce.  An 
IIS socket can accept more than one IIC communication link, and their interleaved arrival 
messages will be dispatched accordingly by Csound.  The links are full duplex (two-way). 
 
cs.sendCLOpen(IPadrs, instance) 
tell the current instance to open an Inter-Instance Client (IIC) socket, and make a privileged 
connection to an IIS SVOpen socket at the indicated address.  A single Csound instance (or its 
equivalent) can open several IIC sockets to different external instances, provided that each 
external server module activates an IIS SVOpen socket that will accept the connection.  The 
remotely paired SVOpen and CLOpen can be activated in any order, each waiting on the other. 
 
cs.setInsRemote(insno, IPadrs, instance) 
tell this instance that any note event meant for instrument insno is to be sent to the Csound 
instance (or equivalent) at IPadrs for performance.  This command automatically includes a 
CLOpen and IIC socket that requires the target instance to have a matching SVOpen and IIS 
socket (see above). 
 
cs.setInsGlobal(insno) 
tell this instance that any note event meant for instrument insno is to be sent to all Csound 
instances with whom the current instance has SVOpen IIS communication (see above). 
 
cs.setMidRemote(chnum, IPadrs, instance) 
tell this instance that any midi command meant for channel chnum is to be sent to the Csound 
instance (or equivalent) at IPadrs for performance.  This command automatically includes a 
CLOpen and IIC socket that requires the target instance to have a matching SVOpen and IIS 
socket (see above). 
 
cs.setMidGlobal(chnum, IPadrs, instance) 
tell this instance that any midi command on channel chnum is to be copied to all Csound 
instances with whom the current instance has SVOpen IIS communication (see above). 
 
cs.setAudioRemoteSI(IPadrs, instance) 

- 7 - 



tell this instance to copy its audio output to the Input Stream of the Csound instance at the 
IPadrs.  This command automatically includes a CLOpen and IIC socket that requires the target 
instance to have a matching SVOpen and IIS socket (see above).  The incoming audio can be 
accessed by the receiving orchestra by its in statement, as in 
 a1 in 
 
cs.setAudioRemoteSO(IPadrs, instance) 
tell this instance to add its audio output to the Output Stream of the Csound instance at the 
IPadrs.  This command automatically includes a CLOpen and IIC socket that requires the target 
instance to have a matching SVOpen and IIS socket (see above).  The incoming audio is not 
accessible by the receiving orchestra, but will be audible in its output. 
 
cs.setXtraScoreEvents(extras) 
cs.setXtraMidiNoteOns(extras) 
cs.setXtraMidiNoteOffs(extras) 
cs.setXtraMidiEvents(extras) 
cs.setXtraMidiMessages(extras) 
cs.setXtraSysexMessages(extras) 
cs.setXtraAudioBufsSI(extras) 
cs.setXtraAudioBufsSO(extras) 
tell this instance to send additional copies of remote-targeted events or messages.  This is to 
ensure that, under conflicting network conditions, the messages will arrive.  Each message 
carries an index number so that when 2 or more actually arrive only the first is placed into 
execution by the receiver. 
 
cs.setIOBufFrames(value) 
set the audio I/O buffer size.  Audio devices routinely buffer sent/received samples into mid-size 
blocks.  Large is efficient, small is most interactive but there is minimum.  The default is 1024 
sample frames. 
 
cs.setBufTimer(period, callbackname) 
set a Csound timer to respond every period seconds.  The period is measured in audio buffer 
periods, typically around 1/60th of a second, and has that resolution of time.  Presumes a host 
callback method. 
 
cs.setP2Timer(period, callbackname) 
set a Csound timer to respond every period seconds.  The period is measured in orchestra K-
periods, typically around 1/500th of a second, and has that resultion of time.  Presumes a host 
callback method. 
 
cs.setOMaxLag(val) 
set the Audio delay time in seconds that will synchronize Beat input with audio output. 
 
cs.setInName(str) 
set the audio input name. The name ‘adc’ will initiate reads from the audio device, any other 
name from a file by that name. 
 
cs.setOutName(str) 
set the audio output name.  The name ‘dac’ will inititate writes to the audio device, any other 
name to a file of that name. 
 
cs.setIntAudio() 
tell the Orchestra translator to install integer audio data paths.  This command must precede the 
sendPrep command (below).  Csound normally does 80% of its calculations using Floating Point 

- 8 - 



arithmetic. While this works well on large expensive CPUs, it can sometimes soak the processor 
in the XO. Also since the FP Unit consumes more electricity than the fixed-point component, it 
can run down your battery faster.  Fixed-point processing in Csound will run about 60% faster 
than floating, and will produce equally high fidelity sound for most opcodes, introducing slight 
distortion for just a few.  So for conservation-minded computing, try inserting the setIntAudio 
command before you type sendPrep. 
 
cs.sendPrep() 
ask your Csound instance to translate and load the current Orchestra, to time-sort the events for 
any Score present, and to initialize any Midifile it has been given.  These operations do extreme 
error checking, so that if either your orchestra or optional score cannot be found or have syntax 
errors, then sendPrep will return an error condition and the instance will not be able to play. 
 
cs.sendPlay() 
start the current instance performing its orchestra (presuming the sendPrep was error free), and 
play to the end of the entire score.  This can be interrupted by Pause followed by  Resume, after 
which it will continue on to the end. 
 
cs.sendPlayForTime(value) 
this operates as the above, but will stop (i.e. Pause) when the given time has elapsed.  On an 
ensuing Play or Resume it will then pick up from where it left off. 
 
cs.sendPause() 
pause the current instance in mid-performance. 
 
cs.sendResume() 
resume a Paused performance from where it left off. 
 
cs.sendPlayAll() 
send a Play command to all Orchestras that are successfully Prepared.  This enables multiple 
Orchestras to start playing in sync.  The audio output of all instances are added into a single 
output stream, which may result in amplitudes exceeding the maximum of 32,767.  If this is a 
problem, adjust each individual orchestra with setVolume, or adjust the sum with setMasVol.  If 
at any time this multi-instance performance encounters a PauseAll followed by ResumeAll, it 
will then continue each orchestra to its end.  Note that a single orchestra within the set can be 
individually Paused and Resumed. 
 
cs.sendPlayAllForTime(value) 
this operates as the above, but will stop (ie PauseAll) when the given time has elapsed.  The rules 
for single or grouped Pause and Resume still apply. 
 
cs.sendPauseAll() 
Pause all instances of a  multi-instance performance. 
 
cs.sendResumeAll() 
Resume a multi-instance performance, even if they were Paused in different ways. 
 
cs.sendRewind() 
stop and rewind the current score to its beginning, then Pause for a Resume or Play command. 
 
cs.sendRewindAll() 
stop and rewind all multi-instance scores to their beginning, then wait on Resume or Play. 
 
cs.sendFastFwdForTime(value) 

- 9 - 



skip forward on a score or midifile performance and begin playing from that point.  The skip will 
be instantaneous.  Although no sound is produced during skipping, all score events or midi 
events are launched silently so that the score parameters are up-to-date at the new point of 
performance. 
 
cs.sendFastFwdToTime(value) 
skip forward or back to the requested point in a score or midifile and begin playing from that 
time.  The skip will be instantaneous.  A skip forward to a later score time will operate like 
FastFwdForTime (see above).  A skip backwards to an earlier score time will first do a Rewind 
to the beginning of the score or midfile, then a Fast Forward to the time requested.  Although no 
sound is produced during forward skipping, all score events or midi events are launched silently 
so that the score parameters are up-to-date at the new point of performance. 
 
cs.waitonEnd() 
Delay further Python commands to this instance until the current score has finished performing. 
 
cs.sendDestroy() 
ask the Csound Server to release the current instance and return all of its allocated memory.  
This action is included when a current instance is replaced by a fresh one via newInstance.  
Note that this action does not destroy the socket connection, only the attached Csound instance. 
 
cs.sendDisconnect() 
destroy the link between Python and the named socket connection.  If a Csound instance is 
currently attached, this will release it first (i.e. sendDestroy) and then disconnect the socket.  
The resident server will then report on how many connection sockets remain. 
 
cs.close() 
this is currently an alias for sendDisconnect, but may have a different function in the future 
when Csound runs as a daemon. 
 
cs.serverShutdown() 
shutdown the present Csound Server.  This command, sent via any socket, will terminate all 
active orchestras, destroy all instances, destroy all socket connections to the host Csound Server, 
and finally shut down the server itself. 
 

- 10 - 



 
3.  Graphic Control using PYGTK 

 
 

- 11 - 



 
4.  The Csound Environment 

 
 
The Orchestra File 
 
Csound runs from two basic files:  an orchestra file and a score file.  The orchestra file is a set 
of instruments that tell the computer how to synthesize sound;  the score file tells the computer 
when.  An instrument is a collection of modular statements which either generate or modify a 
signal;  signals are represented by symbols, which can be "patched" from one module to another.  
For example, the following two statements will generate a 440 Hz sine tone and send it to an 
output channel: 
 
 asig oscil 10000, 440, 1 
  out asig 
 
The first line sets up an oscillator whose controlling inputs are an amplitude of 10000, a 
frequency of 440 Hz, and a waveform number, and whose output is the audio signal asig.  The 
second line takes the signal asig and sends it to an (implicit) output channel.  The two may be 
encased in another pair of statements that identify the  instrument as a whole: 
 
  instr 1 
 asig oscil 10000, 440, 1 
  out asig 
  endin 
 
In general, an orchestra statement in Csound consists of an action symbol followed by a set of 
input variables and preceded by a result symbol.  Its action is to process the inputs and deposit 
the result where told.  The meaning of the input variables depends on the action requested.  The 
10000 above is interpreted as an amplitude value because it occupies the first input slot of an 
oscil unit;  440 signifies a frequency in Hertz because that is how an oscil unit interprets its 
second input argument; the waveform number is taken to point indirectly to a stored function 
table, and before we invoke this instrument in a score we must fill function table #1 with some 
waveform. 
 
The output of Csound computation is not a real audio signal, but a stream of numbers which 
describe such a signal.  If written to a file these can later be played (converted to sound) by an 
independent program; for now, we will think of variables such as asig as tangible audio signals.   
 
Let us now add some extra features to this instrument.  First, we will allow the pitch of the tone 
to be defined as a parameter in the score.  Score parameters can be represented by orchestra 
variables which take on their different values on successive notes.  These variables are named 
sequentially: p1, p2, p3, ...  The first three have a fixed meaning (see the Score File), while the 
remainder are assignable by the user.  Those of significance here are: 
 
 p3 - duration of the current note (always in seconds). 
 p5 - pitch of the current note (in units agreed upon by score and orchestra). 
 
Thus in 
 asig oscil 10000, p5, 1 
the oscillator will take its pitch (presumably in cps) from score parameter 5. 
 

- 12 - 



If the score had forwarded pitch values in units other than cycles-per-second (Hertz), then these 
must first be converted.  One convenient score encoding, for instance, combines pitch class 
representation (00 for C, 01 for C#, 02 for D, ... 11 for B) with octave representation (8. for 
middle C,  9. for the C above, etc.) to give pitch values such as 8.00, 9.03, 7.11.  The expression 
 cpspch(8.09) 
will convert the pitch A (above middle C) to its cps equivalent (440 Hz).  Likewise, the 
expression 
 cpspch(p5) 
will first read a value from p5, then convert it from octave.pitch-class units to cps.  This 
expression could be imbedded in our orchestra statement as 
 asig oscil 10000, cpspch(p5), 1 
to give the score-controlled frequency we sought. 
 
Next, suppose we want to shape the amplitude of our tone with a linear rise from 0 to 10000.  
This can be done with a new orchestra statement 
 amp line 0, p3, 10000 
Here, amp will take on values that move from 0 to 10000 over time p3 (the duration of the note 
in seconds).  The instrument will then become 
 
  instr 1 
 amp line 0, p3, 10000 
 asig oscil amp, cpspch(p5), 1 
  out asig 
  endin 
 
The signal amp is not something we would expect to listen to directly.  It is really a variable 
whose purpose is to control the amplitude of the audio oscillator.  Although audio output 
requires fine resolution in time for good fidelity, a controlling signal often does not need that 
much resolution.  We could use another kind of signal for this amplitude control 
 kamp line 0, p3, 10000 
in which the result is a new kind of signal.  Signal names up to this point have always begun 
with the letter  a  (signifying an audio signal);  this one begins with  k  (for control).  Control 
signals are identical to audio signals, differing only in their resolution in time.  A control signal 
changes its value less often than an audio signal, and is thus faster to generate.  Using one of 
these, our instrument would then become  
 
  instr 1 
 kamp line 0, p3, 10000 
 asig oscil kamp, cpspch(p5), 1 
  out asig 
  endin 
 
This would likely be indistinguishable in sound from the first version, but would run a little 
faster.  In general, instruments take constants and parameter values, and use calculations and 
signal processing to move first towards the generation of control signals, then finally audio 
signals.  Remembering this flow will help you write efficient instruments with faster execution 
times. 
 

- 13 - 



We are now ready to create our first orchestra file.  Type in the following orchestra using the 
system editor, and name it "intro.orc". 
 
  sr = 20000   ; audio sampling rate is 20 kHz 
  kr = 500   ; control rate is 500 Hz 
  ksmps = 40   ; number of samples in a control period (sr/kr) 
  nchnls = 1   ; number of channels of audio output 
 
  instr 1 
 kctrl line 0, p3, 10000  ; amplitude envelope 
 asig oscil kctrl, cpspch(p5), 1 ; audio oscillator 
  out asig   ; send signal to channel 1 
  endin 
 
It is seen that comments may follow a semi-colon, and extend to the end of a line.  There can 
also be blank lines, or lines with just a comment.  Once you have saved your orchestra file, we 
can next consider the score file that will drive it. 
 
The Score File 
 
The purpose of the score is to tell the instruments when to play and with what parameter values.  
The score has a different syntax from that of the orchestra, but similarly permits one statement 
per line with comments after a semicolon.  The first character of a score statement is an opcode, 
determining an action request; the remaining data consists of numeric parameter fields (pfields) 
to be used by that action. 
 
Suppose we want a sine-tone generator to play a pentatonic scale starting at C-sharp above 
middle-C, with notes of 1/2 second duration.  We would create the following score: 
 
 ;  a sine wave function table 
 f1 0 1024 10 1 
 ;  a pentatonic scale 
 i1    0 .5 0.   8.01 
 i1   .5 . . 8.03 
 i1 1.0 . . 8.06 
 i1 1.5 . . 8.08 
 i1 2.0 . . 8.10 
 e 
 
The first statement creates a stored sine table.  The protocol for generating wave tables is simple 
but powerful.  Lines with opcode f interpret their parameter fields as follows: 
 
 p1 - function table number being created 
 p2 - creation time, or time at which the table becomes readable 
 p3 - table size (number of points), which must be a power of two or one greater 
 p4 - generating subroutine, chosen from a prescribed list. 
 
Here the value 10 in p4 indicates a request for subroutine GEN10 to fill the table.  GEN10 
mixes harmonic sinusoids in phase, with relative strengths of consecutive partials given by the 
succeeding parameter fields.  Our score requests just a single sinusoid.  An alternative statement: 
 f1 0 1024 10 1 0 3 
would produce one cycle of a waveform with a third harmonic three times as strong as the first. 

- 14 - 



 
The i statements, or note statements, will invoke the p1 instrument at time p2, then turn it off 
after p3 seconds; it will pass all of its p-fields to that instrument.  Individual score parameters are 
separated by any number of spaces or tabs; neat formatting of parameters in columns is tidy but 
not essential.  The dots in p-fields 3 and 4 of the last four notes invoke a carry feature, in which 
values are simply copied from the immediately preceding note of the same instrument.  A score 
normally ends with an e statement. 
 
The unit of time in a Csound score is the beat.  In the absence of a Tempo statement, one beat 
takes one second.  To double the speed of the pentatonic scale in the above score, we could 
either modify p2 and p3 for all the notes in the score, or simply insert the line 
 t 0 120 
to specify a tempo of 120 beats per minute from beat 0. 
 
Two more points should be noted.  First, neither the f-statements nor the i-statements need be 
typed in time order; Csound will sort the score automatically before use.  Second, it is 
permissible to play more than one note at a time with a single instrument.  To play the same five 
notes as a three-second pentatonic chord we would create the following: 
 
 ;    a sine wave function 
 f1  0  1024   10     1 
 ;    five notes at once 
 i1   0 3 0 8.01 
 i1   0 . . 8.03 
 i1   0 . . 8.06 
 i1   0 . . 8.08 
 i1   0 . . 8.10 
 e 
 
Note also that the f statement need not be in the score.  It is also a legal statement in an orchestra, 
and was used in that way in Examples 1, 2 and 3 above where its proximity made things clearer.  
However, by being in the orchestra header section an f statement always has an action time of 0.  
When included in the score, an f statement can be scheduled at any time during the performance. 
 
Now go into an editor once more and create your own score file.  Name it "intro.sco".  Next go 
back into Python and use the orchestra intro.orc to play the score intro.sco.  Try various 
combinations of Pause and Resume.  Also try setting up Multiple Instances of your orchestra (for 
the moment it doesn’t matter if they’re the same), and try Pauseing and Resuming in various 
ways.  Also try changing the Volume settings. 
 
Now given that you have identical orchestras and identical scores, try starting them together with 
slightly different values in setTempo.  When does the lack of sync become annoying?  Now add 
a “conduct” feature to one of them.  Can you use that to bring them back into line? 
 

- 15 - 



Frequencies within the Orchestra 
 
Suppose we next wished to introduce a small vibrato, whose rate is 1/50 the frequency of the 
note (i.e.  A440 is to have a vibrato rate of 8.8 Hz.).  To do this we will generate a control signal 
using a second oscillator, then add this signal to the basic frequency derived from p5.  This 
might result in the instrument 
 
  instr 1 
 kamp line 0, p3, 10000 
 kvib oscil 2.75, cpspch(p5)/50, 1 
 a1 oscil kamp, cpspch(p5)+kvib, 1 
  out a1 
  endin 
 
Here there are two control signals, one controlling the amplitude and the other modifying the 
basic pitch of the audio oscillator.  For small vibratos, this instrument is quite practical;  however 
it does contain a misconception worth noting.  This scheme has added a sine wave deviation to 
the cps value of an audio oscillator.  The value 2.75 determines the width of vibrato in cps, and 
will cause an A440 to be modified about one-tenth of one semitone in each direction (1/160 of 
the frequency in cps).  In reality, a cps deviation produces a different musical interval above than 
it does below.  To see this, consider an exaggerated deviation of 220 cps, which would extend a 
perfect 5th above A440 but a whole octave below.  To be more correct, we should first convert 
p5 into a true decimal octave (not cps), so that the deviation interval above is equivalent to that 
below.  In general, pitch modification is best done in true octave units rather than pitch-class or 
cps units, and there exists a group of pitch converters to make this task easier.  The modified 
instrument would be 
 
  instr 1 
 ioct = octpch(p5) 
 kamp line 0, p3, 10000 
 kvib oscil 1/120, cpspch(p5)/50, 1 
 asig oscil kamp, cpsoct(ioct+kvib), 1 
  out asig 
  endin 
 
This instrument is seen to use a third type of orchestra variable, an i-variable.  The variable ioct 
receives its value at an initialization pass through the instrument, and does not change during the 
lifespan of each note.  There may be many such init time calculations in an instrument.  As each 
note in a score is encountered, the event space is allocated and the instrument is initialized by a 
special pre-performance pass.  i-variables receive their values at this time, and any other 
expressions involving just constants and i-variables are evaluated.  At this time also, modules 
such as line will set up their target values (such as beginning and end points of the line), and 
units such as oscil will do phase setup and other bookkeeping in preparation for performance.  A 
full description of init-time and performance-time activities, however, must be deferred to a 
broader consideration of the orchestra syntax. 
 

- 16 - 


	PART ONE: THE PYTHON API ENVIRONMENT


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


