
MIT OpenCourseWare 
http://ocw.mit.edu 

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology 
Fall 2007 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Balance 
Suppose you have eight billiard balls. One of them 
is defective -- it weighs more than the others. 
How do you tell, using a balance, which ball is 
defective in two weighings? 

Figure by MIT OpenCourseWare.



Information Theory 

How do you define the information a message carries?


How much information does a message carry? How much of a message is

redundant?

How do we measure information and what are its units?


How do we model a transmitter of messages?

What is the average rate of information a transmitter generates?


How much capacity does a communication channel have (with a given data

format and data frequency)?


Can we remove the redundancy from a message to fill the capacity of a

channel? (lossless compression)

How much can we compress a message and still exactly recover message?


How does noise affect the capacity of a channel?

Can we use redundancy to accurately recover a signal sent over a noisy

line? (error correction)




Information Theory


message1 
message2 
message3 

Information 
source 

transmitter 
(encode) 

receiver 
(decode) 

destination 

message signal message 

noise 
source 

communication 
channel 

… 

OR 

symbol1 
symbol2 
symbol3 
… 
AND 
message1=symbol1, symbol2 
message2=symbol3, symbol5 

Information source selects a Destination decides which message 
desired message from a set of possible messages among set of (agreed) possible messages, 

OR the information source sent. 
selects a sequence of symbols from a set of symbols 
to represent a message. 



Why are we interested in Markov Models?


We can represent an information source as an engine 
creating symbols at some rate according to probabilistic 
rules. The Markov model represents those rules as 
transition probabilities between symbols. 

A 

B C 
1/2 

4/5 1/5 

1/2 

2/5 

1/2 

ACBBA…

1/10 

In the long term, each symbol has a certain 
steady state probability. vss = [ 3 27 27 ]

1 16 2 

Based on these probabilities, we can define the 
amount of information, I, that a symbol carries 
and what the average rate of information or entropy, 
H, a system generates. 



Discrete Markov Chain 
Transition Matrix 

A Markov system (or Markov process or Markov chain) is a system that can be in one of several 
(numbered) states, and can pass from one state to another each time step according to fixed probabilities. 

If a Markov system is in state i, there is a fixed probability, pij, of it going into state j the next time step, and 
pij is called a transition probability. 

A Markov system can be illustrated by means of a state transition diagram, which is a diagram showing 
all the states and transition probabilities. 

The matrix P whose ijth entry is pij is called the transition matrix associated with the 
system. The entries in each row add up to 1. Thus, for instance, a 2 2 transition matrix P 
would be set up as in the following figure. 

http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/Summary8.html




Discrete Markov Chain
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1-step Distribution

Distribution After 1 Step: � vP 

If v is an initial probability distribution vector and P is the transition matrix for a Markov 
system, then the probability vector after 1 step is the matrix product, vP. 

initial probabilities transition probabilities 

i p(i) 

A 9 
27 

B 16 
27 

C 2 
27 

pi(j) 
j 
A B C 

i 

A 0 
4 
5 

1 
5 

B 1 
2 

1 
2 0 

C 4 
5 

4 
5 

4 
5 

Initial probability Transition matrix Distribution 
after 1 step

vector �0 4 1 � 
5 5 

v = [ 9 16 2 ] � � vP = [ 1 16 2 ]
27 , 27 , 27 P = � 

1
2 

1
2 0� 

3 27 27 

1 2 1
��2 5 10��



n-steps Distribution

Distribution After 1 Step: � vP 

If v is an initial probability distribution vector and P is the transition matrix for a Markov 
system, then the distribution vector after 1 step is the matrix product, vP. 

Distribution After 2 Steps: � vP2 

The distribution one step later, obtained by again multiplying by P, is given by

 (vP)P = vP2. 

Distribution After n Steps: � vPn 

Similarly, the distribution after n steps can be obtained by multiplying v on the right by P n 
times, or multiplying v by Pn. 

(vP)PP…P = vPn 

The ijth entry in Pn is the probability that the system will pass from state i to state j in n steps.




    

Stationary 
What happens as number of steps n goes to infinity? 

VssP= Vss 
vss=[vx vy vz …] 

n+1 equations 
v  + v  + v  + . . .=1x y z n unknowns 

A steady state probability vector is then given by vss=[vx vy vz …] 

If the higher and higher powers of P approach a fixed matrix P�, we 
refer to P� as the steady state or long-term transition matrix. 

�v v v � 
� x y z

� 
P� = �vx vy vz� vss=[vx vy vz …] 

�v v v �� x y z� 



                                    

� �


Examples


�0.2 0.8 0 � 
Let P = �

�
0.4 0 0.6�

� and v = [0.2 0.4 0.4] be an initial probability distribution. 

� ��0.5 0.5 0 ��

1 2 

0.5 
0.6 

0.4 

0.8 
0.2 

0.5 

332123…


Then the distribution after one step is given by 

�0.2 0.8 0 �

vP = [0.2 0.4 0.4]�0.4 0 0.6� = [0.4 0.36 0.24]


��0.5 0.5 0 �
�

0.2(0.2)+(0.4)(0.4)+(0.4)(0.5)=0.04+0.16+0.20=0.4




�	 �


( ) [ ]	� � [ ] 

� � � � �	 �


The distribution after one step is given by �


�0.2 0.8 0 �

vP = [0.2 0.4 0.4]�0.4 0 0.6� = [0.4 0.36 0.24]


��0.5 0.5 0 �
�

The two-step distribution one step later is given by 

�0.2 0.8 0 � 
vP 2 = vP P = 0.4 0.36 0.24 

�
0.4 0 0.6

�
= 0.344 0.44 0.216 

��0.5 0.5 0 ��

To obtain the two-step transition matrix, we calculate 

�0.2 0.8 0 ��0.2 0.8 0 � �0.36 0.16 0.48� 
P 2 =

�
0.4 0 0.6

��
0.4 0 0.6

�
=
�
0.38 0.62 0 

� 

��0.5 0.5 0 ����0.5 0.5 0 �� �� 0.3 0.4 0.3 �
�

Thus, for example, the probability of going from State 3 to State 1 in two steps is given 
by the 3,1-entry in P2, namely 0.3. 



� �


� �


The steady state distribution is given by 

�0.2 0.8 0 �

vssP = vss � [vx vy vz ]�0.4 0 0.6� = [vx vy vz ] 

��0.5 0.5 0 ��

v + v + v = 1x y z 

0.2v + 0.4v + 0.5v = vx y z x 

0.8v + 0.5v = vx z y 

0.6v = vy z 

v + v + v = 1x y z 

�0.354 0.404 0.242�


vss = [0.354 0.404 0.242] P� = �0.354 0.404 0.242� 
��0.354 0.404 0.242��

steady state distribution 



Digram probabilities


What are the relative frequencies of the combination of symbols

ij=AA,AB,AC… (digram)?  What is the joint probability p(i,j)?


p(i,j)=p(i)pi(j) 

i p(i) 

A 9 
27 

B 16 
27 

C 2 
27 

pi(j) 
j 
A B C 

i 

A 0 
4 
5 

1 
5 

B 1 
2 

1 
2 0 

C 1 
2 

2 
5 

1 
10 

p(i,j) j 
A B C 

i 

A 0 
4 

15 
1 

15 

B 8 
27 

8 
27 0 

C 1 
27 

4 
135 

1 
135 

p(A,A)=p(B,C)=0; AA, BC never occurs 

p(B,A) occurs most often; 4/15 times 

Shannon & Weaver pg.41




Why are we interested in Markov Models?


We can represent an information source as an engine 
creating symbols at some rate according to probabilistic 
rules. The Markov model represents those rules as 
transition probabilities between symbols. 

A 

B C 
1/2 

4/5 1/5 

1/2 

2/5 

1/2 

ACBBA…

1/10 

In the long term, each symbol has a certain 
steady state probability. vss = [ 3 27 27 ]

1 16 2 

Based on these probabilities, we can define the 
amount of information, I, that a symbol carries 
and what the average rate of information or entropy, 
H, a system generates. 



Information


We would like to develop a usable measure of the information 
we get from observing the occurrence of an event having 
probability p . Our first reduction will be to ignore any 
particular features of the event, and only observe whether or not 
it happened. In essence this means that we can think of the 
event as the observance of a symbol whose probability of 
occurring is p. We will thus be defining the information in 
terms of the probability p. 

An introduction to information theory and entropy-- Tom Carter




Information

W� � w� l� � � � � � � o� r� i� � � � � � � � � � � m� a� u� e� I� � � � t� � � � � � � s� v� r� l� p� � � � � � � � � �e � i� l want � u� � nformation � e� s� r� � (p) � o have � e� e� a� � roperties: 

. � n� � m� t� o � s � � � � � � � � � � � u� n� i� y� � (p)1� � I� f�or� a� i� �n� i� � a� n�on-nega� tive� � q� a� t� t� :� I� � � � � 0.� � � 

2� � If� � � � e� e� t� h� � � p� o� a� i� i� y� 1� � w� � � � � � n� � � � � � � � � � � � � � f� o� � � � � � o� c� r� e� c� � � � � t� e� e� � � � � �
. � � an � v� n� � as � r� b� b� l� t� � , � e get � o information � r� m the � c� u� r� n� e of � h� � vent: �


 I (� 1� )� � =� � �0.� � � [information is surprise, freedom of choice, uncertainty…] 

3.� � �If� � t� w� o� � �in� �de� �pe� �nd� �en� �t� �ev� e� n� t� s� � �oc� �cu� �r� �(w� h� o� s� e� � �jo� �in� �t� �pr� o� �b�a�b�i�l�i�t�y� �i�s� t� h� e� � �pr� �od� �uc� �t� �of� � �th� �ei� �r� 
� � � � � � � � � � � p� o� a� i� i� i� s� ,� t� � � � t� e� i� � � � � � � � � � � w� � � � � � f� o� � � � � � � � � � � � t� e� e� � � � �s� i� � � � � �individual � r� b� b� l� t� e� )� � hen � h� � nformation � e get � r� m observing � h� � vent � s the
� � � � o� � � � � � t� o� i� � � � �mat� ions� :� �sum � f the � w� � nfor � � � �

� � � � � •� p� )� =� I� p� )� +� � � � � � � (� h� s� i� � t� e� c� � � � � � � � p� o� e� t� � � � .� .� )�I(p1 � 2� � � (� 1� � I(p2). � T� i� � s � h� � ritical � r� p� r� y . � � �

4� � W� � � � � � � w� nt� o� � � i� f�or� at� o� � � � � � � � � � t� � � � � a� c� � � � � � � � � � (� n� ,� i� � f� c� ,� m� � � � � � � � � �. � e will � a� � � ur � n� � m� � i� n measure � o be � � ontinuous � a� d� � n � a� t� � onotonic)
� � � � � � � � � o� � � � � � p� o� a� il� t� � � � � � � � � � c� a� g� s� i� � p� o� a� i� i� y� s� � � � � � r� s� l� � � � � s� i� h� � � � � � � �es�function � f the � r� b� b� � i� y (slight � h� n� e� � n � r� b� b� l� t� � hould � e� u� t in � l� g� t chang �
� � � i� f� r�ma� i� n�)�.�in � n� o� � t� o�

An introduction to information theory and entropy-- Tom Carter




Information

I(� p� )� � �=� �lo� g� �b(� 1� /� p� )� � �=� -�lo� �g�b �(�p)� �,� x=yn  logy(x)=n 

f� � � s� m� � � � � � � � � � � c� n� t� n� � � � � T� e� b� � � � b� d� � � � � � � � � � t� e� u� �its� w� � � � � � u� i� �g.or � o� e positive � o� s� a� t b. � h� � ase � � etermines � h� � n � � � e are � s� n
log�2�� units of I are bits log2(x)=log10(x)/log10(2) 

Ex. Flip a fair coin (pH=0.5, pT=0.5 ) 

1 flip: H or T

 I= -log 2(p)= -log2(0.5)= log2(2)=1 bit


n flips: HTTH…n times
 I= -log

2(p p p p …)= -log2(pn)
 = -nlog2(p) = nlog2(1/p)= =n log2(2) 
= n bits Additive property 

-log2(p1p2)= -log2(p1) -log2(p2) 
Also think of switches 
1 switch = 1 bit (21=2 possibilities) 
3 switches = 3bits (23 =8 possibilities) I1and I2= I1+ I2 



Ex. Flip an unfair coin (pH=0.3, pT=0.7 ) 

1 flip: H

 I= -log2(pH)= -log2(0.3)= 1.737 bit


less likely, more info

1 flip: T more likely, less info


I= -log2(pT)= -log2(0.7)= 0.515 bit


5 flips: HTTHT
 I= -log2(pH pT pT pH pT)
 = -log2(0.3•0.7 • 0.7 • 0.3 • 0.7) = -log2 (0.031) 
= 5.018 bits 1.004 bits/flip 

5 flips: THTTT
 I= -log2(pT pH pT pT pT)
 = -log2(0.7•0.3 • 0.7 • 0.7 • 0.7) = -log2 (0.072) 
= 3.795 bits 0.759 bits/flip 



           

Entropy

Ex. Flip an unfair coin (pH=0.3, pT=0.7 ) 


1 flip: 

IH= 1.737 bits,

IT= 0.515 bits


So what’s the average bits/flip for n flips as n ��  ?


Use a weighted average based on probability of information per flip.


Call this average information/flip, Entropy H


H=pH IH + pTIT

 =pH [-log2(pH)] + pT[-log2(pT)]


 =0.3(1.737 bits) + 0.7(0.515 bits)

=0.822 bits




� ( ) 


Entropy 
Average information/symbol called Entropy H


H = � pi log pi

i 

H(X,Y)=H(X)+H(Y) H also obeys additive property 
if events are independent. 

For unfair coin, pH=p, pT=(1-p) 

The average information per symbol is greatest when 
the symbols equiprobable. 



Balance 
Suppose you have eight billiard balls. One of them 
is defective -- it weighs more than the others. 
How do you tell, using a balance, which ball is 
defective in two weighings? 

Figure by MIT OpenCourseWare.



Wrong way

50/50 split


Only allowed 2 weighings. 

Weighing #1 

1 2 3 4 5 6 7 8


Heavy


Weighing #2

3 41 2  

Heavy


Which is heavier, 1 or 2?


Figure by MIT OpenCourseWare.



Wrong way

50/50 split


Only allowed 2 weighings.Weighing #1 

1 2 3 4 5 6 7 8


Heavy


Weighing #2

3 41 2  

Heavy


Which is heavier, 1 or 2?


Figure by MIT OpenCourseWare.



Wrong way Balance has 3 states 
50/50 split Heavy L, Heavy R, Equal 

50/50 split doesn’t let all 
3 states be equally probable

Weighing #1 

1 2 3 4 5 6 7 8 

HeavyL


Weighing #2

3 41 2  

HeavyL


Which is heavier, 1 or 2?


Figure by MIT OpenCourseWare.



Optimal way Case #1 
~1/3,~1/3,~1/3 split 

Now, HL,HR,B 
Almost equiprobable 

Weighing #1 
Only allowed 2 weighings.(1,2,3) vs. (4,5,6) 

71 2 3 4 5 6 
8 

HeavyL 

Weighing #2 
1 vs 2  

1 2 3 

HeavyL


2 is the odd ball


Figure by MIT OpenCourseWare.



Optimal way Case #1b

~1/3,~1/3,~1/3 split 

Now, HL,HR,B 
Almost equiprobable 

Weighing #1 Only allowed 2 weighings.
(1,2,3) vs. (4,5,6)


1 2 3 4 5 6 
7


8 

HeavyL 

Weighing #2 
1 vs. 2 1 2 3 

Balanced

3 is the odd ball


Figure by MIT OpenCourseWare.



Optimal way Case #2

~1/3,~1/3,~1/3 split 

Now, HL,HR,B 
Almost equiprobable 

Weighing #1 Only allowed 2 weighings.
(1,2,3) vs. (4,5,6) 7 

1 2 3 4 5 6 
8 

HeavyR 

Weighing #2 
4 vs. 5 4 5 6 

HeavyR


5 is the odd ball


Figure by MIT OpenCourseWare.



Optimal way Case #3

~1/3,~1/3,~1/3 split 

Now, HL,HR,B 
Almost equiprobable 

Weighing #1 Only allowed 2 weighings.
(1,2,3) vs. (4,5,6)


1 2 3 4 5 6 
7


8


Balanced 

Weighing #2 
7 vs. 8 7 8 

HeavyR


8 is the odd ball


Figure by MIT OpenCourseWare.



Optimal way Case #3

~1/3,~1/3,~1/3 split 

Now, HL,HR,B 
Almost equiprobable 

Weighing #1 
Only allowed 2 weighings.(1,2,3) vs (4,5,6) 7 

1 2 3 
Balanced 

4 5 6 
8 

Weighing #2 
7 vs 8  7 8 

Heavy 
8 is the odd ball 

Try to design your experiments to maximize the information 
extracted from each measurement by making possible outcomes 
equally probable. 

Figure by MIT OpenCourseWare.



 

Compression

Shannon Fano Split symbols so probabilities halved

ZIP implosion algorithm uses this 

Ex. “How much wood would a woodchuck chuck” 31 characters 

ASCII 7bits/character, so 217 bits 
Frequency chart


o 0.194 �H = � pi log pi( )  
c 0.161 i 

h 0.129 H=-(0.194 log20.194 + 0.161 log20.161 +…) 

w 0.129 H=2.706 bits/symbol, so 83.7 bits for sentence 
u 0.129 
d 0.097 
k 0.065 
m 0.032 o has -log20.194=2.37 bits of information 

a 0.032 l has -log20.032= 4.97 bits of information 

l 0.032 The rare letters carry more information 



Compression

Shannon Fano Split symbols so probabilities halved 

(or as close as possible) 

Ex. “How much wood would a woodchuck chuck” 31 characters 

Frequency chart


o 0.194 0.194 
c 0.161 0.29 0.161 
h 0.129 0.484 0.129 
w 
u 

0.129 
0.129 

0.516 
0.258 

0.129 
0.129 

d 0.097 0.258 0.097 
k 0.065 0.161 0.065 
m 0.032 0.096 0.032 
a 0.032 0.064 0.032 
l 0.032 0.032 



Compression

Shannon Fano Split symbols so probabilities halved 

Ex. “How much wood would a woodchuck chuck” 31 characters 

Frequency chart 

o 0.194 11 
c 
h 

0.161 
0.129 1 10 

101 
100 

w 
u 

0.129 
0.129 

0 01 
011 
010 

d 0.097 00 001 
k 0.065 000 0001 
m 0.032 0000 00001 
a 0.032 00000 000001 
l 0.032 000000 



Compression

Shannon Fano Split symbols so probabilities halved


Ex. “How much wood would a woodchuck chuck” 31 characters 

“Prefix free - one code is never the start of another code” 

Frequency chart 

11 o 0.194 11 
101 c 0.161 101 
100 h 0.129 1 10 100 
011 w 0.129 0 011 
010 u 0.129 01 010 

001 d 0.097 00 001 
0001 k 0.065 000 0001 
00001 m 0.032 0000 00001 
000001 a 0.032 00000 000001 
000000 l 0.032 000000 



Compression 
Shannon Fano Split symbols so probabilities halved


Ex. “How much wood would a woodchuck chuck” 31 characters


Encoding chart p


11 o 
101 c 
100 h 
011 w 
010 u 
001 d 
0001 k 
00001 m 
000001 a 
000000 l 

0.194

0.161

0.129

0.129

0.129

0.097

0.065

0.032

0.032

0.032


# 

6 
5 6(2)+5(3)+4(3)+4(3)+4(3)+ 
4 3(3)+2(4)+1(5)+1(6)+1(6) 
4 =97 bits 
4 
3 97bits/31 characters 
2 =3.129 bits/character

1

1 H=2.706 bits/symbol

1




                 

                   

               

Compression 
Shannon Fano 

Ex. “How much wood would a woodchuck chuck” 31 characters 

Decoding chart


11 o 
101 c 
100 h 
011 w 
010 u 
001 d 
0001 k 
00001 m 
000001 a 
000000 l 

10011011000010101011000111111001 32 
h o w m u c h w o o d 

011110100000000010000010111111001101 36 

w o u l d a w o o d c 
10001010100011011000101010001 29 
h u c k c h u c k 

97bits 



Compression

Shannon Fano 

0110000010000000001000001000010000010010010101010001 

Decoding chart 

11 o 52bits 

101 c 
100 h 
011 w 
010 u 
001 d 
0001 k 
00001 m 
000001 a 
000000 l 



Compression

Shannon Fano 

0110000010000000001000001000010000010010010101010001 
a lw 

Decoding chart 

11 o 
101 c 
100 h 
011 w 
010 u 
001 d 
0001 k 
00001 m 
000001 a 
000000 l 

k a m a c kd d u  

52bits/ 12 characters = 4.333 bits/character 

greater than before 
because character 
frequencies are different 



Huffman Coding

Add two lowest probabilities JPEG, MP3 

group symbols 
Resort 
Repeat 

Ex. “How much wood would a woodchuck chuck” 
Frequency chart 

o 0.149 o 0.149 o 0.149 o 0.149 
c 0.161 c 0.161 c 0.161 c 0.161 
h 0.129 h 0.129 h 0.129 almk 0.161 
w 0.129 w 0.129 w 0.129 h 0.129 
u 0.129 u 0.129 u 0.129 w 0.129 
d 0.097 d 0.097 d 0.097 u 0.129 
k 0.065 k 0.065 alm 0.096 d 0.097 
m 0.032 al 0.064 k 0.065 
a 0.032 m 0.032 
l 0.032 



Huffman Coding

Ex. “How much wood would a woodchuck chuck”


0.194 
0.161 
0.129 
0.129 
0.129 
0.097 
0.065 
0.032 
0.032 
0.032 

o 0.194 
c 0.161 
h 0.129 
w 0.129 
u 0.129 
d 0.097 
k 0.065 
al 0.064 
m 0.032 

o  0.194 
c 0.161 
h 0.129 
w 0.129 
u 0.129 
d 0.097 
alm 0.096 
k 0.065 

o 0.194 
c 0.161 

h 0.129 
w 0.129 
u 0.129 
d 0.097 

almk 0.161 

hw 0.258 almkc 0.322 udo 0.420 almkchw 0.580 

ud 0.226 
o 0.194 
c 0.161 
almk 0.161 

ud 0.226 
o o 0.194 
c c 0.161 
h almk 0.161 
w h 0.129 
u w 0.129 
d 
k 
m 
a 
l 

almkchwudo 1 

hw 0.258 almkc 0.322 udo 0.420 
ud 0.226 hw 0.258 
o 0.194 



Huffman Coding 
Ex. “How much wood would a woodchuck chuck” 

o 
c 
h 
w 
u 
d 
k 
al 
m 

o 
c 
h 
w 
u 
d 
alm 
k 

o 
c 
almk 
h 
w 
u 
d 

almkc 
hw almkc udo 

011 

110 

ud 
o 

udo 

hw 

almkchw 1 

00111 

010 

1100 
11010110111 

110110 

0 

10 

11 

01 

011 
10 

1101 
11011 

ud 01 
o o 
c c 
h almk 
w h 101 
u w 100 
d 
k 
m 
a 
l 

almkchwudo 1 
hw

ud

o

c

almk 110
 backward pass 

assign codes 



Huffman Coding

Ex. “How much wood would a woodchuck chuck” 

o 
c 
h 
w 
u 
d 
k 
al 
m 

o 
c 
h 
w 
u 
d 
alm 
k 

o 
c 
almk 
h 
w 
u 
d 

almkc 
hw 
ud 
o 

udo 
almkc 
hw 

almkchw 
udo 

00 

011 

111 

010 

1100 
11010110111 

110110 

ud 
o o 
c c 
h almk 
w h 101 
u w 100 
d 
k 
m 
a 
l 

almkchwudo 1 
hw

ud

o

c

almk
 find codes for single 

letters 



Huffman Coding 
Ex. “How much wood would a woodchuck chuck” 

Huffman 

o 00 6 6(2)+5(3)+4(3)+4(3)+4(3)+ Shanon Fano 

c 111 5 3(3)+2(4)+1(5)+1(6)+1(6) 
11 o 
101 c 

h 100 4 100 h=97 bits w 101 4 011 w 
u 011 4 010 u 
d 010 3 001 d 

k 1100 2 0001 k 

11010 97bits/31 characters 00001 mm 1 
a 110111 1 =3.129 bits/character 000001 a 

000000 l 
l 110110 1 

97bits/31 characters 
=3.129 bits/character 

Notice o has 2 bits; H=2.706 bits/symbol

a,l have 6 bits




Huffman's algorithm is a method for building an extended 
binary tree of with a minimum weighted path length from a set 
of given weights. 

31 

Huffman 

o 00 6	 18 

c	 111 5 
13h 100 4 

w 101 4 10 
8 

u 011 4 5 
d 010 3 

7k 1100 2 3 
m 11010 1 
a 110111 1 2 
l 110110 1 

111 o d 
00110110 l a m k c w h  u 

1 1 1 2 5 4 4 6 3 4 

Frequencies*(edges to root)= weighted path length 



Huffman's algorithm is a method for building an extended 
binary tree of with a minimum weighted path length from a set 
of given weights. 

31 

Huffman 

o 00 6	 18 

c	 111 5 
13h 100 4 

w 101 4 10 
8 

u 011 4 5 
d 010 3 
k 1100 2 3 7 
m 11010 1 
a 110111 1 2 
l 110110 1 

111 o d 
110110 a m k c w h  00 ul

1 1 2 5 4 4 6 3 41 

Each branch adds a bit. Minimize (#branches * frequency)

Least frequent symbol further away. More frequent, closer.




MP-3 

Huffman coding is used in the final step of creating an MP3 file.� The MP3 format 
uses frames of 1152 sample values.� If the sample rate is 44.1kHz, the time that 
each frame represents is ~26ms.� The spectrum of this 1152-sample frame is 
spectrally analyzed and the frequencies are grouped in 32 channels (critical bands).� 
The masking effects within a band are analyzed based on a psycho-acoustical 
model.� This model determines the tone-like or noise-like nature of the masking in 
each channel and then decides the effect of each channel on its neighboring bands.� 
The masking information for all of the channels in the frame is recombined into a 
time varying signal.� This signal is numerically different from the original signal but 
the difference is hardly noticeable aurally.� The signal for the frame is then Huffman 
coded.� A sequence of these frames makes up an MP3 file. 
http://webphysics.davidson.edu/faculty/dmb/py115/huffman_coding.htm 


