MIT OpenCourseWare
|http://ocw.mit.edu

MAS. 160 / MAS. 510 / MAS. 511 Signals, Systems and Information for Media Technology
Fall 2007

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

Balance

Suppose you have eight billiard balls. One of them is defective -- it weighs more than the others. How do you tell, using a balance, which ball is defective in two weighings?

Figure by MIT OpenCourseWare.
(

Information Theory

How do you define the information a message carries?
How much information does a message carry? How much of a message is redundant?
How do we measure information and what are its units?
How do we model a transmitter of messages?
What is the average rate of information a transmitter generates?
How much capacity does a communication channel have (with a given data format and data frequency)?

Can we remove the redundancy from a message to fill the capacity of a channel? (lossless compression)
How much can we compress a message and still exactly recover message?
How does noise affect the capacity of a channel?
Can we use redundancy to accurately recover a signal sent over a noisy line? (error correction)

Information Theory

Information source selects a
desired message from a set of possible messages
OR
selects a sequence of symbols from a set of symbols to represent a message.

Destination decides which message among set of (agreed) possible messages, the information source sent.

Why are we interested in Markov Models?

We can represent an information source as an engine creating symbols at some rate according to probabilistic rules. The Markov model represents those rules as transition probabilities between symbols.

In the long term, each symbol has a certain steady state probability.

$$
v_{s s}=\left[\begin{array}{lll}
\frac{1}{3} & \frac{16}{27} & \frac{2}{27}
\end{array}\right]
$$

Based on these probabilities, we can define the amount of information, I, that a symbol carries and what the average rate of information or entropy, H , a system generates.

Discrete Markov Chain

Transition Matrix

A Markov system (or Markov process or Markov chain) is a system that can be in one of several (numbered) states, and can pass from one state to another each time step according to fixed probabilities.

If a Markov system is in state i , there is a fixed probability, p_{ij}, of it going into state j the next time step, and $p_{i j}$ is called a transition probability.

A Markov system can be illustrated by means of a state transition diagram, which is a diagram showing all the states and transition probabilities.

The matrix P whose ijth entry is p_{ij} is called the transition matrix associated with the system. The entries in each row add up to 1 . Thus, for instance, a 2×2 transition matrix P would be set up as in the following figure.

Discrete Markov Chain

1-step Distribution

Distribution After 1 Step: vP

If v is an initial probability distribution vector and P is the transition matrix for a Markov system, then the probability vector after 1 step is the matrix product, vP.
initial probabilities

i	$\mathrm{p}(\mathrm{i})$
A	$\frac{9}{27}$
B	$\frac{16}{27}$
C	$\frac{2}{27}$

$p_{i}(\mathrm{j})$		j		
		A	B	C
	A	0	$\frac{4}{5}$	$\frac{1}{5}$
i	B	$\frac{1}{2}$	$\frac{1}{2}$	0
	C	$\frac{4}{5}$	$\frac{4}{5}$	$\frac{4}{5}$

Distribution after 1 step

$$
v P=\left[\begin{array}{lll}
\frac{1}{3} & \frac{16}{27} & \frac{2}{27}
\end{array}\right]
$$

n-steps Distribution

Distribution After 1 Step: vP

If v is an initial probability distribution vector and P is the transition matrix for a Markov system, then the distribution vector after 1 step is the matrix product, vP .

Distribution After 2 Steps: $\mathrm{vP}{ }^{2}$
The distribution one step later, obtained by again multiplying by P, is given by

$$
(\mathrm{vP}) \mathrm{P}=\mathrm{vP} \mathrm{P}^{2}
$$

Distribution After n Steps: vPn
Similarly, the distribution after n steps can be obtained by multiplying v on the right by P n times, or multiplying v by P^{n}.
(vP)PP...P = vPn

The $\mathrm{ij}^{\text {th }}$ entry $\mathrm{in} \mathrm{P}^{n}$ is the probability that the system will pass from state i to state j in n steps.

Stationary

What happens as number of steps n goes to infinity?

$$
\begin{array}{cl}
v_{s s} P=v_{s s} & v_{s s}=\left[v_{x} v_{y} v_{z} \ldots\right] \\
v_{x}+v_{y}+v_{z}+\ldots=1 & \text { n+1 equations } \\
& \text { n unknowns }
\end{array}
$$

A steady state probability vector is then given by $\mathrm{v}_{\mathrm{ss}}=\left[\mathrm{v}_{\mathrm{x}} \mathrm{v}_{\mathrm{y}} \mathrm{v}_{\mathrm{z}} \ldots\right]$

If the higher and higher powers of P approach a fixed matrix P_{∞}, we refer to P_{∞} as the steady state or long-term transition matrix.

$$
P_{\infty}=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z} \\
v_{x} & v_{y} & v_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right]
$$

$$
v_{s s}=\left[v_{x} v_{y} v_{z} \ldots\right]
$$

Examples

Let $P=\left[\begin{array}{ccc}0.2 & 0.8 & 0 \\ 0.4 & 0 & 0.6 \\ 0.5 & 0.5 & 0\end{array}\right]$ and $v=\left[\begin{array}{lll}0.2 & 0.4 & 0.4\end{array}\right]$ be an initial probability distribution.

Then the distribution after one step is given by

$$
v P=\left[\begin{array}{lll}
0.2 & 0.4 & 0.4
\end{array}\right]\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0 & 0.6 \\
0.5 & 0.5 & 0
\end{array}\right]=\left[\begin{array}{lll}
0.4 & 0.36 & 0.24
\end{array}\right]
$$

$$
0.2(0.2)+(0.4)(0.4)+(0.4)(0.5)=0.04+0.16+0.20=0.4
$$

The distribution after one step is given by

$$
v P=\left[\begin{array}{lll}
0.2 & 0.4 & 0.4
\end{array}\right]\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0 & 0.6 \\
0.5 & 0.5 & 0
\end{array}\right]=\left[\begin{array}{lll}
0.4 & 0.36 & 0.24
\end{array}\right]
$$

The two-step distribution one step later is given by

$$
v P^{2}=(v P) P=\left[\begin{array}{lll}
0.4 & 0.36 & 0.24
\end{array}\right]\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0 & 0.6 \\
0.5 & 0.5 & 0
\end{array}\right]=\left[\begin{array}{lll}
0.344 & 0.44 & 0.216
\end{array}\right]
$$

To obtain the two-step transition matrix, we calculate

$$
P^{2}=\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0 & 0.6 \\
0.5 & 0.5 & 0
\end{array}\right]\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0 & 0.6 \\
0.5 & 0.5 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0.36 & 0.16 & 0.48 \\
0.38 & 0.62 & 0 \\
0.3 & 0.4 & 0.3
\end{array}\right]
$$

Thus, for example, the probability of going from State 3 to State 1 in two steps is given by the 3,1 -entry in P^{2}, namely 0.3 .

The steady state distribution is given by

$$
\begin{aligned}
& v_{s s} P=v_{s s} \quad \rightarrow \quad\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right]\left[\begin{array}{ccc}
0.2 & 0.8 & 0 \\
0.4 & 0 & 0.6 \\
0.5 & 0.5 & 0
\end{array}\right]=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right] \\
& v_{x}+v_{y}+v_{z}=1 \\
& \downarrow \\
& \downarrow \\
& 0.2 v_{x}+0.4 v_{y}+0.5 v_{z}=v_{x} \\
& 0.8 v_{x}+0.5 v_{z}=v_{y} \\
& 0.6 v_{y}=v_{z} \\
& v_{x}+v_{y}+v_{z}=1 \\
& \quad \downarrow \\
& v_{s s}=\left[\begin{array}{lll}
0.354 & 0.404 & 0.242
\end{array}\right] \quad \\
& \text { steady state distribution }
\end{aligned}
$$

Digram probabilities
What are the relative frequencies of the combination of symbols $\mathrm{ij}=\mathrm{AA}, \mathrm{AB}, \mathrm{AC} \ldots$ (digram)? What is the joint probability $\mathrm{p}(\mathrm{i}, \mathrm{j})$?

$$
\mathrm{p}(\mathrm{i}, \mathrm{j})=\mathrm{p}(\mathrm{i}) \mathrm{p}_{\mathrm{i}}(\mathrm{j})
$$

i	$\mathrm{p}(\mathrm{i})$
A	$\frac{9}{27}$
B	$\frac{16}{27}$
C	$\frac{2}{27}$

$\mathrm{p}_{\mathrm{i}}(\mathrm{j})$		j		
		A	B	C
i	A	O	$\frac{4}{5}$	$\frac{1}{5}$
	B	$\frac{1}{2}$	$\frac{1}{2}$	0
	C	$\frac{1}{2}$	$\frac{2}{5}$	$\frac{1}{10}$

$\mathrm{p}(\mathrm{i}, \mathrm{j})$		j			
			A	B	C
			0	$\frac{4}{15}$	$\frac{1}{15}$
			$\frac{8}{27}$	$\frac{8}{27}$	o
			$\frac{1}{27}$	$\frac{4}{135}$	$\frac{1}{135}$

$p(A, A)=p(B, C)=0 ; A A, B C$ never occurs p(B,A) occurs most often; 4/15 times

Shannon \& Weaver pg. 41

Why are we interested in Markov Models?

We can represent an information source as an engine creating symbols at some rate according to probabilistic rules. The Markov model represents those rules as transition probabilities between symbols.

In the long term, each symbol has a certain steady state probability.

$$
v_{s s}=\left[\begin{array}{lll}
\frac{1}{3} & \frac{16}{27} & \frac{2}{27}
\end{array}\right]
$$

Based on these probabilities, we can define the amount of information, I, that a symbol carries and what the average rate of information or entropy, H , a system generates.

Information

We would like to develop a usable measure of the information we get from observing the occurrence of an event having probability p . Our first reduction will be to ignore any particular features of the event, and only observe whether or not it happened. In essence this means that we can think of the event as the observance of a symbol whose probability of occurring is p . We will thus be defining the information in terms of the probability p .

Information

We will want our information measure $\mathrm{I}(\mathrm{p})$ to have several properties:

1. Information is a non-negative quantity: $\mathrm{I}(\mathrm{p}) \leq 0$.
2. If an event has probability 1 , we get no information from the occurrence of the event: $\mathrm{I}(1)=0$. [information is surprise, freedom of choice, uncertainty...]
3. If two independent events occur (whose joint probability is the product of their individual probabilities), then the information we get from observing the events is the sum of the two informations:
$\mathrm{I}(\mathrm{p} 1 \cdot \mathrm{p} 2)=\mathrm{I}(\mathrm{p} 1)+\mathrm{I}(\mathrm{p} 2)$. (This is the critical property \ldots. $)$
4. We will want our information measure to be a continuous (and, in fact, monotonic) function of the probability (slight changes in probability should result in slight changes in information).

Information

$\mathrm{I}(\mathrm{p})=\log _{\mathrm{b}}(1 / \mathrm{p})=-\log _{\mathrm{b}}(\mathrm{p})$,
for some positive constant b. The base b determines the units we are using. $\log _{2}$ units of I are bits $\log _{2}(\mathrm{x})=\log _{10}(\mathrm{x}) / \log _{10}(2)$

Ex. Flip a fair coin $\left(\mathrm{p}_{\mathrm{H}}=0.5, \mathrm{p}_{\mathrm{T}}=0.5\right)$
1 flip: H or T
$\mathrm{I}=-\log _{2}(\mathrm{p})=-\log _{2}(0.5)=\log _{2}(2)=1$ bit
n flips: HTTH...n times
$\mathrm{I}=-\log _{2}(\mathrm{p}$ p p p $\ldots)=-\log _{2}\left(\mathrm{p}^{\mathrm{n}}\right)$
$=-n \log _{2}(\mathrm{p})=\mathrm{n} \log _{2}(1 / \mathrm{p})=\mathrm{n} \log _{2}(2)$
$=\mathrm{n}$ bits
Additive property

$$
-\log _{2}\left(\mathrm{p}_{1} \mathrm{p}_{2}\right)=-\log _{2}\left(\mathrm{p}_{1}\right)-\log _{2}\left(\mathrm{p}_{2}\right)
$$

Also think of switches
1 switch $=1$ bit ($2^{1}=2$ possibilities)
3 switches $=3$ bits $\left(2^{3}=8\right.$ possibilities)
I_{1} and $\mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{I}_{2}$

Ex. Flip an unfair coin $\left(p_{H}=0.3, p_{T}=0.7\right)$
1 flip: H
$\mathrm{I}=-\log _{2}\left(\mathrm{p}_{\mathrm{H}}\right)=-\log _{2}(0.3)=1.737 \mathrm{bit}$
1 flip: T
less likely, more info more likely, less info

5 flips: HTTHT
$\mathrm{I}=-\log _{2}\left(\mathrm{p}_{\mathrm{H}} \mathrm{p}_{\mathrm{T}} \mathrm{p}_{\mathrm{T}} \mathrm{p}_{\mathrm{H}} \mathrm{p}_{\mathrm{T}}\right)$
$=-\log _{2}(0.3 \bullet 0.7 \cdot 0.7 \cdot 0.3 \cdot 0.7)=-\log _{2}(0.031)$
$=5.018$ bits $\quad 1.004$ bits/flip
5 flips: THTTT
$\mathrm{I}=-\log _{2}\left(\mathrm{p}_{\mathrm{T}} \mathrm{p}_{\mathrm{H}} \mathrm{p}_{\mathrm{T}} \mathrm{p}_{\mathrm{T}} \mathrm{p}_{\mathrm{T}}\right)$
$=-\log _{2}(0.7 \bullet 0.3 \cdot 0.7 \cdot 0.7 \cdot 0.7)=-\log _{2}(0.072)$
$=3.795$ bits
0.759 bits/flip

Entropy

Ex. Flip an unfair coin $\left(p_{H}=0.3, p_{T}=0.7\right)$
1 flip:
$\mathrm{I}_{\mathrm{H}}=1.737$ bits,
$\mathrm{I}_{\mathrm{T}}=0.515$ bits
So what's the average bits/flip for n flips as $n \rightarrow \infty$?
Use a weighted average based on probability of information per flip.
Call this average information/flip, Entropy H

$$
\begin{aligned}
\mathrm{H} & =\mathrm{p}_{\mathrm{H}} \mathrm{I}_{\mathrm{H}}+\mathrm{p}_{\mathrm{T}} \mathrm{I}_{\mathrm{T}} \\
& =\mathrm{p}_{\mathrm{H}}\left[-\log _{2}\left(\mathrm{p}_{\mathrm{H}}\right)\right]+\mathrm{p}_{\mathrm{T}}\left[-\log _{2}\left(\mathrm{p}_{\mathrm{T}}\right)\right] \\
& =0.3(1.737 \text { bits })+0.7(0.515 \text { bits }) \\
& =0.822 \text { bits }
\end{aligned}
$$

Entropy

Average information/symbol called Entropy H

$$
H=-\sum_{i} p_{i} \log \left(p_{i}\right)
$$

$\mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})+\mathrm{H}(\mathrm{Y}) \quad \mathrm{H}$ also obeys additive property
if events are independent.
For unfair coin, $\mathrm{p}_{\mathrm{H}}=\mathrm{p}, \mathrm{p}_{\mathrm{T}}=(1-\mathrm{p})$

The average information per symbol is greatest when the symbols equiprobable.

Balance

Suppose you have eight billiard balls. One of them is defective -- it weighs more than the others. How do you tell, using a balance, which ball is defective in two weighings?

Figure by MIT OpenCourseWare.
(

(

Only allowed 2 weighings.

Weighing \#1

Figure by MIT OpenCourseWare.

Wrong way 50/50 split

Heavy
Weighing \#2

Which is heavier, 1 or 2 ?

Weighing \#1

Heavy
Weighing \#2

Which is heavier, 1 or 2 ?

Weighing \#1

HeavyL
Weighing \#2

Which is heavier, 1 or 2 ?

2 is the odd ball

Optimal way
$\sim 1 / 3, \sim 1 / 3, \sim 1 / 3$ split
Now, HL,HR,B Almost equiprobable

Weighing \#1

HeavyL
Weighing \#2
1 vs. 2

Figure by MIT OpenCourseWare.

Case \#1b

Only allowed 2 weighings.

Balanced

5 is the odd ball

Weighing \#2
7 vs. 8

8

HeavyR

Optimal way
$\sim 1 / 3, \sim 1 / 3, \sim 1 / 3$ split
Now, HL,HR,B Almost equiprobable

Weighing \#1 $(1,2,3)$ vs $(4,5,6)$

Figure by MIT OpenCourseWare. Case \#3

Only allowed 2 weighings.

Weighing \#2
7 vs 8
Heavy

Try to design your experiments to maximize the information extracted from each measurement by making possible outcomes equally probable.

Compression

Shannon Fano
ZIP implosion algorithm uses this

Split symbols so probabilities halved

Ex. "How much wood would a woodchuck chuck" 31 characters

ASCII 7bits/character, so 217 bits

Frequency chart

o	0.194	$H=-\sum_{i} p_{i} \log \left(p_{i}\right)$
c	0.161	$\mathrm{H}=-\left(0.194 \log _{2} 0.194+0.161 \log _{2} 0.161+\ldots\right)$
h	0.129	$\mathrm{H}=2.706 \mathrm{bits} /$ symbol, so 83.7 bits for sentence
w	0.129	
u	0.129	
d	0.097	
k	0.065	
m	0.032	o has $-\log _{2} 0.194=2.37$ bits of information
a	0.032	l has $-\log _{2} 0.032=4.97$ bits of information
l	0.032	The rare letters carry more information

Compression

Shannon Fano
Split symbols so probabilities halved (or as close as possible)
Ex. "How much wood would a woodchuck chuck" 31 characters

Frequency chart

o	0.194		0.194				
c	0.161		0.29	0.161			
h	0.129	0.484		0.129			
w	0.129	0.516		0.129			
u	0.129		258	0.129			
d	0.097		0.258	0.097			
k	0.065			0.161	0.065		
m	0.032				0.096	0.032	
a	0.032					0.064	0.032
1	0.032						0.032

Compression

Shannon Fano
Split symbols so probabilities halved

Ex. "How much wood would a woodchuck chuck" 31 characters

Frequency chart

o	0.194		11				
c	0.161			101			
h	0.129	1	10	100			
w	0.129	0		011			
u	0.129		01	010			
d	0.097		00	001			
k	0.065			000	0001		
m	0.032				0000	00001	
a	0.032					00000	000001
1	0.032						000000

Compression

Shannon Fano
Split symbols so probabilities halved

Ex. "How much wood would a woodchuck chuck" 31 characters
"Prefix free - one code is never the start of another code"
Frequency chart

11	o	0.194		11				
101	c	0.161		10	101			
100	h	0.129	1	10	100			
011	w	0.129	0		011			
010	u	0.129		01	010			
001	d	0.097		00	001			
0001	k	0.065			000	0001		
00001	m	0.032				0000	00001	
000001	a	0.032					00000	000001
000000	1	0.032						000000

Compression

Shannon Fano Split symbols so probabilities halved

Ex. "How much wood would a woodchuck chuck" 31 characters

Encoding chart			p	$\#$
11	o	0.194	6	
101	c	0.161	5	$6(2)+5(3)+4(3)+4(3)+4(3)+$
100	h	0.129	4	$3(3)+2(4)+1(5)+1(6)+1(6)$
011	w	0.129	4	$=97 \mathrm{bits}$
010	u	0.129	4	
001	d	0.097	3	$97 \mathrm{bits} / 31$ characters
0001	k	0.065	2	$=3.129$ bits $/$ character
00001	m	0.032	1	
000001	a	0.032	1	$\mathrm{H}=2.706$ bits/symbol
000000	l	0.032	1	

Compression

Shannon Fano

Ex. "How much wood would a woodchuck chuck" 31 characters

Decoding chart	1001101100001010101100011111100132
11 o	h o w m u c h w o o d
101	$011110100000000010000010111111001101^{36}$
100 h	w ou l d a w o o d c
011 w	1000101010001101100010101000129
010 u	$\mathrm{h} u \mathrm{c}$ k c h u c k
001 d	97bits
0001 k	
00001 m	
000001 a	
000000 1	

Compression

Shannon Fano

0110000010000000001000001000010000010010010101010001

Decoding chart		
11	o	52bits
101	c	
100	h	
011	W	
010	u	
001	d	
0001	k	
00001	m	
000001	a	
000000	l	

Compression

Shannon Fano

Decoding chart

11	o	52bits/ 12 characters $=4.333$ bits/character
101	c	greater than before
100	h	because character
011	w	frequencies are different
010	u	
001	d	
0001	k	
00001	m	
000001	a	
000000	l	

Huffman Coding

Add two lowest probabilities group symbols
Resort
Repeat
Ex. "How much wood would a woodchuck chuck"
Frequency chart

o	0.149	o	0.149	o	0.149	o	0.149
c	0.161	c	0.161	c	0.161	c	0.161
h	0.129	h	0.129	h	0.129	almk	0.161
w	0.129	w	0.129	w	0.129	$/ 4 \mathrm{~h}$	0.129
u	0.129	u	0.129	u	$0.129 / / \mathrm{w}$	0.129	
d	0.097	d	0.097	d	$0.097 /$	u	0.129
k	0.065	k	0.065	alm	0.096	d	0.097
m	0.032	al	0.064	k	0.065		
a	0.032	m	0.032				
l	0.032						

Huffman Coding

Ex. "How much wood would a woodchuck chuck"

Huffman Coding

Ex. "How much wood would a woodchuck chuck"

Huffman Coding

Ex. "How much wood would a woodchuck chuck"

Huffman Coding

Ex. "How much wood would a woodchuck chuck"
Huffman

o	00	6
c	111	5
h	100	4
w	101	4
u	011	4
d	010	3
k	1100	2
m	11010	1
a	110111	1
l	110110	1

$$
\begin{aligned}
& 6(2)+5(3)+4(3)+4(3)+4(3)+ \\
& 3(3)+2(4)+1(5)+1(6)+1(6) \\
& =97 \text { bits }
\end{aligned}
$$

Shanon Fano

11	o
101	c
100	h
011	w
010	u
001	d
0001	k
00001	m
000001	a
000000	l

97bits/31 characters
$=3.129$ bits/character

Notice o has 2 bits;
$\mathrm{H}=2.706 \mathrm{bits} / \mathrm{symbol}$ a,l have 6 bits

Huffman's algorithm is a method for building an extended binary tree of with a minimum weighted path length from a set of given weights.

Frequencies*(edges to root)= weighted path length

Huffman's algorithm is a method for building an extended binary tree of with a minimum weighted path length from a set of given weights.

Huffman

Each branch adds a bit. Minimize (\#branches * frequency) Least frequent symbol further away. More frequent, closer.

MP-3

Huffman coding is used in the final step of creating an MP3 file. The MP3 format uses frames of 1152 sample values. If the sample rate is 44.1 kHz , the time that each frame represents is $\sim 26 \mathrm{~ms}$. The spectrum of this 1152 -sample frame is spectrally analyzed and the frequencies are grouped in 32 channels (critical bands). The masking effects within a band are analyzed based on a psycho-acoustical model. This model determines the tone-like or noise-like nature of the masking in each channel and then decides the effect of each channel on its neighboring bands. The masking information for all of the channels in the frame is recombined into a time varying signal. This signal is numerically different from the original signal but the difference is hardly noticeable aurally. The signal for the frame is then Huffman coded. A sequence of these frames makes up an MP3 file.
http://webphysics.davidson.edu/faculty/dmb/py115/huffman_coding.htm

