REFLECTION RAY-TRACING:

reference \& illumination angles are measured "the long way around" and the object beam is in the $+z$ direction

$m=+1$ for "direct" reconstruction (illum \& ref from same side) -1 for "phase conjugation"
(illum \& ref from opposite sides)
distances $=$ radii of curvature (negative $=>$ real image)
$\square_{2}-$ direct
($m=+1$)

$\square_{2}-$ direct

HORIZONTAL FOCUS (out of the plane of the page)-
VERTICAL FOCUS (in of the plane of the page)-

$$
\frac{\frac{1}{R_{\text {out }}} \square \frac{1}{R_{\text {ill }}}}{\square_{2}}=m \frac{\frac{1}{R_{\text {obj }}} \square \frac{1}{R_{\text {ref }}}}{\square_{1}}
$$

All angles on this page are the usual external angles.
The usual time that internal angles (the \square^{\prime}) are used is in the "fringe-tip and -separation" calculations, and the " z-equation" for the allowed angles (if you use that approach).

The angles and wavelengths are first determined by those calculations, and are then plugged in to these focus equations to solve the imaging questions. Recall that negative radii of curvature mean converging waves for all directions of travel!
(direct, forward, $m=+1$ reconstruction)

recall: Snell's Law: $\sin \square_{x x x, \text { ext }}=n_{i} \cdot \sin \square_{x x x, \text { int }} \quad$ also: $n_{\text {ext }} \cdot \square_{\text {ext }}=n_{\text {int }} \cdot \square_{\text {int }}$
tilted - stacked - mirror representation:

$$
\begin{aligned}
& t_{1} \cdot \tan \square_{\text {tip1 }}=t_{2} \cdot \tan \square_{\text {tip2 }} \\
& \square_{\text {tip1 }}=\frac{\square_{\text {obj, int }}+\square_{\text {ref, int }}}{2}, \quad \square_{\text {tip2 }}=\frac{\square_{\text {out, int }}+\square_{\text {ill,int }}}{2} \\
& \frac{t_{1}}{\square_{1}} \sin \square_{\text {tip1 }}=\frac{t_{2}}{\square_{2}} \sin \square_{\text {tip2 }}
\end{aligned}
$$

x-, z - grating representation (all m):

$$
\begin{aligned}
& \frac{\sin \square_{\text {out,ext }} \square_{\sin } \square_{\text {ill, ext }}}{\square_{2, \text { ext }}}=\frac{1}{d}=m \frac{\sin \square_{\text {bjj, ext }} \square_{\sin } \square_{\text {efe, ext }}}{\square_{1, \text { ext }}} \quad \square \text { means that } 1 / R \text { and } \cos ^{2} \square R \text { still work! } \\
& n_{2} \cdot t_{2} \frac{\cos \square_{\text {out,int }} \square_{\cos } \square_{\text {ill,int }}}{\square_{2, \text { ext }}}=m \cdot n_{1} \cdot t_{1} \frac{\cos \square_{\text {obj, int }} \square_{\cos } \square_{\text {ref,int }}}{\square_{1, \text { ext }}} \quad(\pm 1 \text {, Goodman - Heisenberg Uncertainty })
\end{aligned}
$$

Special Case: On-Axis Reflection "Denisyuk" Holography

(direct, forward, $m=+1$ reconstruction)

$$
\begin{aligned}
\square_{\text {ref, ext }} & =180^{\circ} \square \square_{\text {obj, ext }}, \quad \text { so } \square_{\text {tip } 1}=\square_{\text {tip } 2}=90^{\circ} \text { (conformal fringes) } \\
\text { so that: } \square_{\text {out,ext }} & =180^{\circ} \square \square_{\text {ill,ext }} \text { (mirror reflection) } \\
\frac{1}{\bar{\square}_{1}} & =\frac{2 \cdot n_{1}}{\square_{1, \text { ext }}} \cos \left(\square_{\text {obj, int }}\right) \\
\frac{t_{1}}{\bar{\square}_{1}} & =\frac{t_{2}}{\square_{2}} \\
\frac{1}{\square_{2}} & =\frac{2 \cdot n_{2}}{\square_{2, \text { ext }}} \cos \left(\square_{\text {out, int }}\right), \\
\text { or pulling it together: } \quad n_{2} \cdot t_{2} \frac{\cos \square_{\text {out, int }}}{\square_{2, \text { ext }}} & =n_{1} \cdot t_{1} \frac{\cos \square_{\text {obj, int }}}{\square_{1, \text { ext }}} \quad(\pm 1, \text { GHU) }
\end{aligned}
$$

