Survey of Hyperspectral Imaging Techniques

Michael D. Stenner October 30, 2009

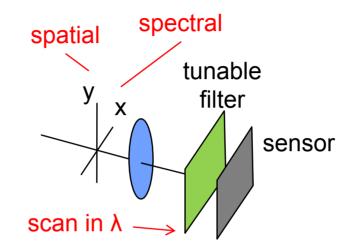
© 2009 The MITRE Corporation. All rights Reserved.

Compared Systems

- Baseline Scanning Filter
- Baseline Simple Pushbroom
- Gehm (Brady) Multiplexed Pushbroom
 - "High-throughput, multiplexed pushbroom hyperspectral microscopy"
- Wagadarikar (Brady) Single Disperser
 - "Single disperser design for coded aperture snapshot spectral imaging"
- Gehm (Brady) Dual Disperser
 - "Single-shot compressive spectral imaging with a dual-disperser architecture"
- Descour CTIS
 - "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results"
- Mooney Prism Tomographic
 - "High-throughput hyperspectral infrared camera"
- Gentry ISIS
 - "Information-Efficient Spectral Imaging Sensor"
- Mohan (Raskar) Agile Spectrum Imaging
 - "Agile Spectrum Imaging: Programmable Wavelength Modulation for Cameras and Projectors"

Points of Comparison

- Data volume
- Physical volume
- Architectural impact on acquisition time
- Computational reconstruction and scaling
- Photon efficiency (noise, sensitivity, etc.)
- Compression (Information efficiency)

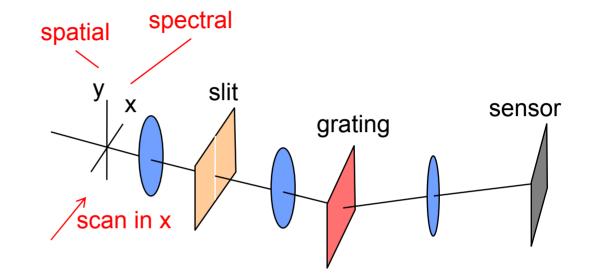

Caveats

- Many quantities (like physical volume and reconstruction scaling) depend heavily on the specific implementation. Interpret these results as expected limits.
- Data quality metric there is none. Different techniques can be expected to produce different amounts and types of artifacts. These are discussed qualitatively herein.

Baseline – Scanning Filter

Summary:

- Data Cube: N_x x N_y x L
- Volume: 1f * D²
- Acquisition time: scanning.
- Reconstruction: None
- Photon Efficiency: 1/L
- Compression: 1

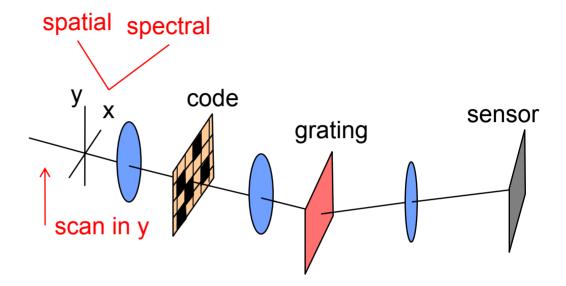


Scan in λ using an electronically-tunable filter. Typically, the filter is based on either liquid crystals or acousto-optic principles.

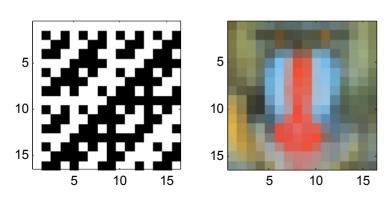
Baseline – Pushbroom

Summary:

- Data Cube: N_x x N_y x L
- Volume: 5f * D²
- Acquisition time: Mechanical motion is required between lines (resulting in photon dead-time) but object motion is treated stably.
- Reconstruction: None
- Photon Efficiency: 1/N_x
- Compression: 1



Each row on the sensor provides a spectrum at that y value. Scanning in x provides the other spatial dimension.


Gehm (Brady) – Multiplexed Pushbroom

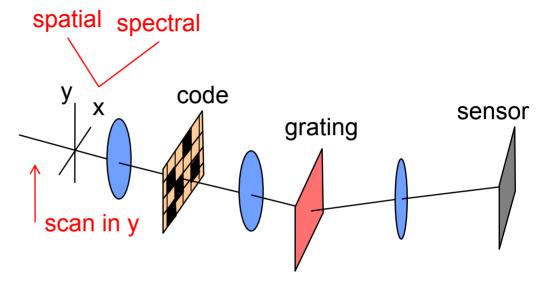

Summary:

- Data Cube: N_x x N_y x L
- Volume: 5f * D²
- Acquisition time: Mechanical motion is required between lines.
- Reconstruction: $O(N_x N_v^2 L)$
- Photon Efficiency: $\sim 1/2$
- Compression: ~1

code/decode orthogonality requires scene uniformity in y.

by sliding code over scene vertically (or vice versa) one can mix rows to synthesize columns of uniform scene value.

MITRE

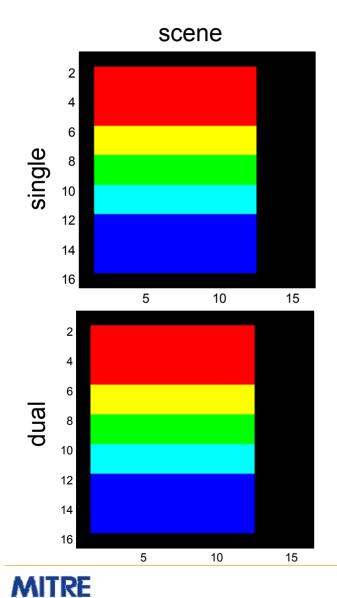

Gehm (Brady) – Multiplexed Pushbroom (2)

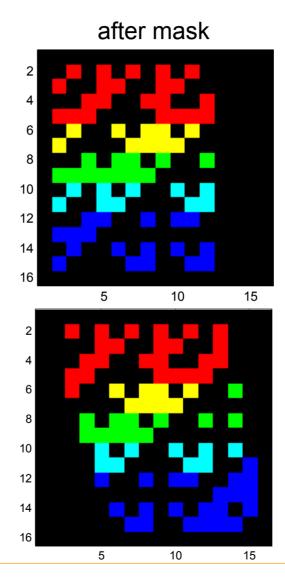
- Reconstruction: $O(N_x N_y^2 L) = O(N_x N_y L \times N_y)$
 - Every point in the data cube is a dot-product of length- N_y vectors.
- Scanning options:
 - Scan scene over code for "continuous" pushbroom mode, requiring slightly more complex data re-mapping, or
 - Circularly scan code through the field stop for fixed-field capture
- In prototype systems, resolution was set by code size to order 6x6 CCD pixels for processing/sampling convenience. The re-binning and digital aberration (smile) correction was not included in the reconstruction scaling.

Wagadarikar (Brady) – Single Disperser

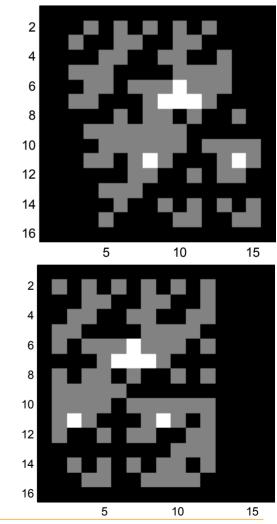
Summary:

- Data Cube: N_x x N_y x L
- Volume: 5f * D²
- Acquisition time: Mechanical motion is required between lines (if any).
- Reconstruction: $O((N_xN_yL)^3)$, L₁ minimization
- Photon Efficiency: ~1/2
- Compression: 1/L to 1
- Identical hardware to Multiplexed Pushbroom
- Skip scan steps or don't scan at all
- Reconstruct via L_1 minimization
- Reduced spatial information in single-shot mode object pixels imaged to closed code addresses are completely lost

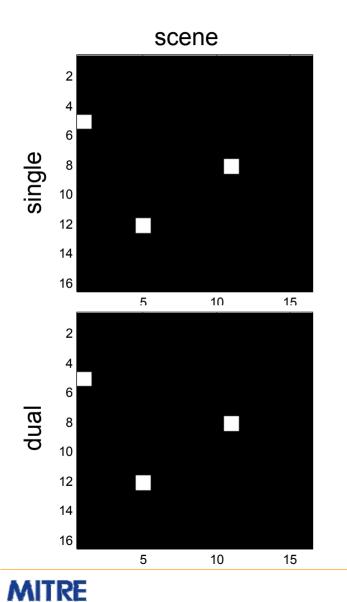

Gehm (Brady) – Dual Disperser

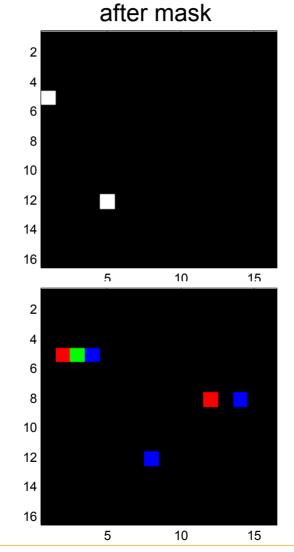

Summary:

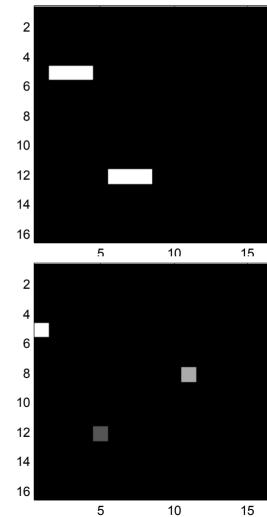
- Data Cube: N_x x N_y x L
- Volume: 9f * D²
- Acquisition time: Snapshot
- Reconstruction: $O((N_xN_yL)^3)$,
 - L₁ minimization
- Photon Efficiency: ~1/2
- Compression: 1/L
- Raw measured frames are spatially isomorphic with scene each pixel is a spectral projection.


Images removed due to copyright restrictions. Source: Gehm, M. E. et al. "Single-shot Compressive Spectral Imaging with a Dual-disperser Architecture." *Optics Express* 15, no. 21 (2007): 14013-14027.

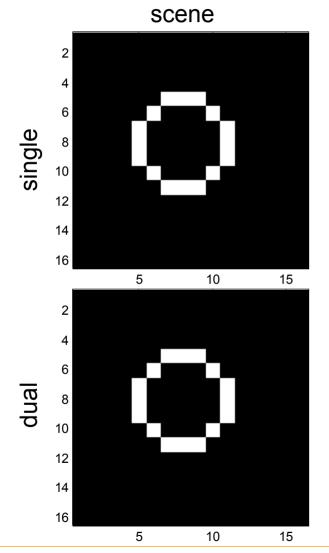
Single/Dual Disperser Comparison

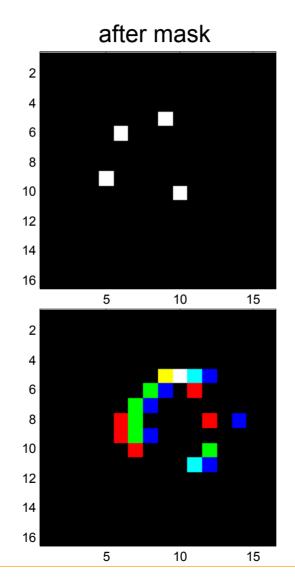


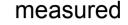


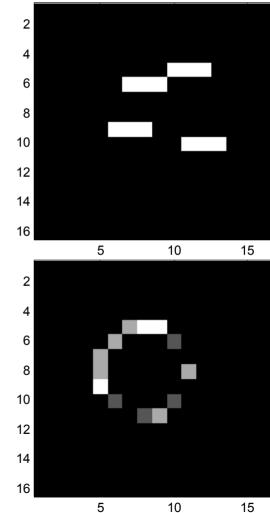

© 2009 The MITRE Corporation. All rights Reserved.

Single/Dual Disperser Comparison




measured




© 2009 The MITRE Corporation. All rights Reserved.

Single/Dual Disperser Comparison

MITRE

Descour – CTIS

Summary:

- Data Cube: N_x x N_y x L
- Volume: 4f * D²
- Acquisition time: Snapshot
- Reconstruction:

 $O(n^3)$, FBP

 $O(n^2 \log n)$, Fourier

- Photon Efficiency: 1
- Compression: ~1

Images removed due to copyright restrictions. Source: Descour, M., and E. Dereniak. "Computed-tomography Imaging

Spectrometer: Experimental Calibration and Reconstruction Results." Applied Optics 34, no. 22 (August 1, 1995): 4817-4826.

- Inefficiently uses sensor; dead spaces required to avoid overlap.
- Requires $P > N_x \times N_y \times L$ pixels
- Limited information efficiency; missing cone problem
- Reconstruction approaches have been proposed to improve missing cone (extrapolation and model-based approaches)

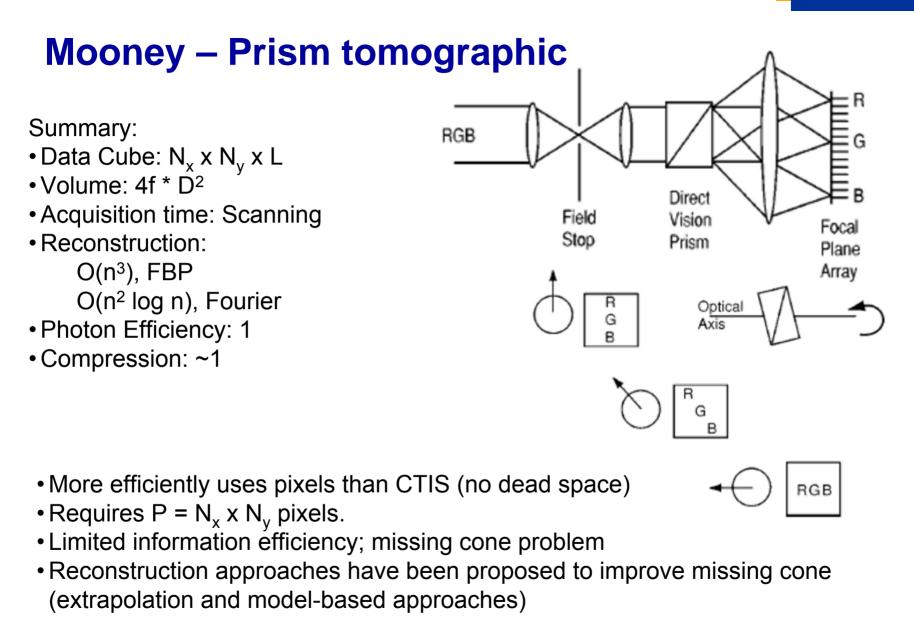
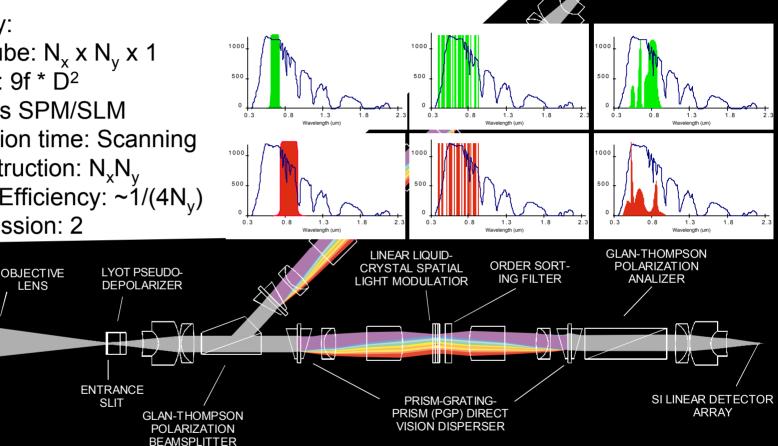


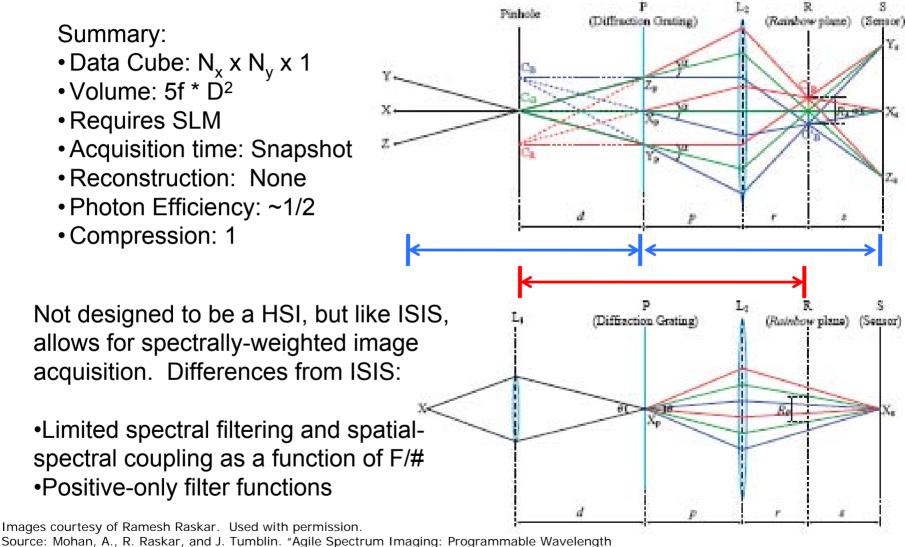
Image from Mooney, JM et al. "High-throughput hyperspectral infrared camera." *JOSA A* 14, no. 11 (1997): 2951-2961. (All authors with US Air Force.)

MITRE


© 2009 The MITRE Corporation. All rights Reserved.

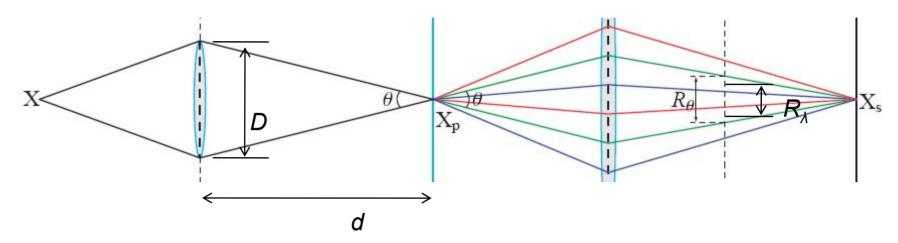
Summary:

- Data Cube: N_x x N_y x 1
- Volume: 9f * D²
- Requires SPM/SLM
- Acquisition time: Scanning
- Reconstruction: N_xN_y
- Photon Efficiency: $\sim 1/(4N_v)$
- Compression: 2


MITRE

- Reconstruction: subtraction required for every N_xN_y point
- Photon efficiency: for any given pixel-channel band, one arm is always zero (losing half the light) and the other will in in general be between 0 and 1.

Sandia National Laboratories, US Department of Energy


Mohan (Raskar) – Agile Spectrum Imaging

Modulation for Cameras and Projectors" *Eurographics* 2008, Vol 27 no. 2 (2008).

Mohan (Raskar) – Agile Spectrum Imaging spectral selectivity

 R_{θ} = width of one wavelength in rainbow plane R_{λ} = distance between centers of extreme wavelengths

Maximum number of distinct wavelengths = $\frac{R_{\lambda}}{R_{\alpha}} + 1 = \frac{d}{D} + 1 = F + 1$

Where *F* is the F-number of the objective lens. Therefore, high spectral selectivity requires a very slow system.

Image courtesy of Ramesh Raskar. Used with permission.

Source: Mohan, A., R. Raskar, and J. Tumblin. "Agile Spectrum Imaging: Programmable Wavelength Modulation for Cameras and Projectors" *Eurographics* 2008, Vol 27 no. 2 (2008).

Summary

	Data Cube	Physical Volume	Acquisition	Reconstruction	Photon Efficiency	Compres- sion
Scan. Filter	$N_x \times N_y \times L$	1f * D ²	Scanning	None	1/L	1
Pushbroom	$N_x \times N_y \times L$	5f * D ²	Scanning	None	1/N _x	1
Multiplexed Pushbroom	$N_x \times N_y \times L$	5f * D ²	Scanning	$O(N_x N_y^2 L)$	~1/2	1
Single Disperser	$N_x \times N_y \times L$	5f * D ²	Scanning/ Snapshot	$O((N_xN_yL)^3), L_1 minimization$	~1/2	1/L to 1
Dual Disperser	$N_x \times N_y \times L$	9f * D ²	Snapshot	$O((N_xN_yL)^3), L_1 minimization$	~1/2	1/L
CTIS	$N_x \times N_y \times L$	4f * D ²	Snapshot	O(n ³), FBP O(n ² log n), Fourier	1	~1
Prism Tomographic	$N_x \times N_y \times L$	4f * D ²	Scanning	O(n ³), FBP O(n ² log n), Fourier	1	~1
ISIS	$N_x \times N_y \times 1$	9f * D ²	Scanning	N _x N _y	~1/(4N _y)	2
Agile Spectrum	N _x x N _y x 1	5f * D ²	Snapshot	None	~1/2	1

MAS.531 Computational Camera and Photography Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.