New Directions in Imaging Sensors

Ravi Athale, MITRE Corporation

OIDA Annual Forum

19 November 2008

We live in xxxx age

information, biotech, nano, neurotech, quantum...

Regardless of the answer, we live in an age of **IMAGES**!

Photo removed due to copyright restrictions. A person using his cell phone to take of photo of a fire or explosion.

MITRE

Images (clockwise from upper left) from US Govt Agencies: NSA/ESA; 9-11 Commission; NIMH; NIH.

Exponential Growth in Camera Technology

Stand-alone digital cameras:

 1991: Kodak DCS-100, 1280x1024 pixels, \$30,000
 2008: Kodak Easyshare V1003, 10 Megapixel, \$170
 Total Digital Camera Volume > 150 million

Cellphone cameras:

1997: First baby birth recorded on cell phone camera (VGA res)
2008: Samsung SCH-B600, 10 Megapixel, 30% of cell phone contain cameras Total cell phone volume to reach 1 billion

Courtesy of Barry Hendry (Wikipedia)

Mammoth Camera: 1900

In 1900, George R. Lawrence built this mammoth 900 lb. camera, then the world's largest, for \$5,000 (enough to purchase a large house at that time!) It took 15 men to move and operate the gigantic camera. The photographer was commissioned by the Chicago & Alton Railway to make the largest photograph (the plate was 8 x 4.5 ft in size!) of its train for the company's pamphlet "The Largest Photograph in the World of the Handsomest Train in the World."

World's Smallest Cameras: 2006

http://www.letsgodigital.org/en/8687/omnivision_camerachip_ov6920/

OmniVision OV6920 sensor, 2.1 x 2.3 mm; PillCam

http://www.medigus.com/CAMERA_1_8_mm/Camera.aspx

Medigus Introspicio Camera 1.8 mm, 326x382 pixels

Medigus Corp. Israeli medical imaging company

1.8 mm Endoscope

But....basic Camera Architecture Remained Unchanged over 100 years

Other Observations:

- Detector arrays in visible wavelength scaling up very rapidly
 - 100 Mpixel available
 - Gigapixel possible (1.2 micron pixel over 35 mm sq array)
- Conventional imaging optics (wide FOV, high resolution) scales very poorly (heavy, bulky, expensive)
- Governing principles
 - Maximum sample rate for all parameters everywhere
 - Fixed resource allocation
 - Measure everything then process
- Information unevenly distributed => most of the mega pixels contain very little to no information
- Large data volume (Multi GB/frame) overwhelming processing and communications.

What is the nature of the problem?

- Coming of data tsunami.....
 - Storing, moving, processing data
 - IDC report.... Data storage technology falling behind data generation (primarily driven by still images and video)
- Worsening pixel-pupil ratio....
 - <20% of images get looked at (this is an optimistic number)</p>
- We are in an era that is "pixel rich information poor"
- One solution:
 - Invoke Moore's Law to make problems go away
- Other approach:
 - Change our basic notions about imaging

Imaging Sensors: Back to Basics

Stand-off

Photo courtesy of anjamation on Flickr.

Stand-off sensing involves wave propagation which...

*carries energy and information over distance without material transport

*scrambles spatial organization of signals

Two aspects to processing

Source coding: how object information is encoded in wavefront

Channel distortion

Taking pictures => Scene interrogation

Useable information is the key concept dependent on the user

- Break from the past paradigm:
 - Generic front end sensor generating a 2D pixel map
 - Application-specific tasks performed in backend computation

Useable information for navigation task is different from target recognition task

Acquiring 3D spatial, spectral, polarization, temporal information that is *relevant to task at hand* in the most resource efficient manner is the primary goal.

MITRE

Future Directions for Imaging sensors

"Cameras will also change form. Today, they are basically *film cameras without the film*, which makes about as much sense as automobiles circa 1910, which were horse-drawn carriages without the horse. A car owner of that time would be pretty shocked by what's in a showroom now. Camera stores of the future will surprise us just as much."

 Nathan Myhrvold, former chief technology officer of Microsoft and a co-founder of Intellectual Ventures, NY Times, 5 June 2006

Where are imaging sensors headed: Extending the Automotive Analogy

Horse-drawn Carriage

Horse-less Carriage

Images (clockwise from upper left): DARPA, US Army, USDA, NASA.

➡

Specialization? Autonomy?

Courtesy of M Skaffari on Flickr.

Film Cameras

Film-less Cameras

MITRE

Reworking Biological Inspiration:

Human Eye and the Camera

- Made sense when cameras were used by exclusively humans
- Does it make sense for autonomous and semi-autonomous systems?

- Animal world shows a far greater diversity of imaging sensor designs
- Co-evolution of eye-brain-locomotion
 - Task-specific sensor design
 - Efficient use of resources

SOME EXAMPLES OF NEW CAMERA DESIGNS AND OPERATION

Prototype camera

Stanford U

Courtesy of Ren Ng. Used with permission.

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Stanford U

Extending the depth of field

main lens at f/4

conventional photograph, conventional photograph, main lens at f/22

light field, main lens at f / 4, after all-focus algorithm [Agarwala 2004]

Our Modification of Light Field Camera: Flexible Modality Imaging

A light field architecture facilitates placing multidimensional diversity in the camera's pupil plane:

Color information (e.g.) is available at each spatial location in (s,t) from each filter array image

Spatial resolution from pinholes, filter resolution from # filters

Experimental Results

- Use conventional Nikon 50mm f/1.8 lens, 10Mpix 9µ CCD
- Pinhole arrays printed on transparencies, varying size + pitch
- Filters cut and arranged on laser-cut plastic holders, placed inside lens over aperture stop

Left and lower center images © 2009 IEEE. Courtesy of IEEE. Used with permission. Source: Horstmeyer, R., G.W. Euliss, R.A. Athale, and M. Levoy. "Flexible Multimodal Camera Using a Light Field Architecture." Proceedings of IEEE ICCP, 2009.

Experimental Results

<u>Nine filters</u>:
 Color =R, G, B, Y, C,
 Neutral Density = .4, .6, 1
 pinhole r = 25µ, pitch = 250µ

 Use 3 ND filters to extend dynamic range (CMYK with density filter, HDR)

RGB

HDR

Images courtesy of SPIE. Used with permission. Source: Horstemeyer, R., R. A. Athale, and G. Euliss. "Light Field Architecture for Reconfigurable Multimode Imaging." *Proc. of SPIE* 7468, August 2009. doi: 10.1117/12.828653

MITRE

Image © 2009 IEEE. Courtesy of IEEE. Used with permission. Source: Horstmeyer, R., G.W. Euliss, R.A. Athale, and M. Levoy. "Flexible Multimodal Camera Using a Light Field Architecture." Proceedings of IEEE ICCP, 2009.

© 2006 The MITRE Corporation. All rights reserved

IR

ND

Thin observation module bound by optics (TOMBO)

- Compound image is collected via microlens array
- High-resolution image is reconstructed from sub-images
- Architecture enables reduction in size and weight

See Tanida, et. al., Applied Optics 40, 1806-1813 (2001)

Examples of Scene Interrogation systems:

Same Scaling Analysis Doesn't Apply

Photo of Adobe Lightfield camera array (2008). See <u>http://www.notcot.com/archives/</u> 2008/02/adobe-lightfiel.php Mesa Imaging SR 3100 3D camera. See <u>http://www.flickr.com/photos/81</u> <u>381691@N00/3720851779/</u> Pixim D2500 'Orca' chipset for wide dynamic range video (e.g. surveillance). See <u>http://www.pixim.com/products-</u> and-technology/pixim-orca-chipsets

Light-field cameras

Time-of-flight imaging

Active pixel sensors

Images removed due to copyright restrictions.

Image of demonstration.

Foveation

Final Thought....

• A Personal Imaging Assistant (PIA) for:

- Health care:

- Checking for sun burns, status of superficial wounds, ear infections....
- Appearance:
 - Wardrobe matching (color and styles) while getting dressed or shopping
 - Make up assistance (skin color analysis)
- Hygiene:
 - Cleanliness of surroundings (presence of bacteria), water, food safety, quality
- Relationships:
 - Remembering people, names, likes/dislikes, family details
 - Discerning moods (boredom, deceit, amorous intents...)
- and of course taking pictures and videos without manual intervention based on user preferences learned over time
- How?
 - Multi-spectral, polarimetric, day/night, active/passive illuminations, powerful processing
 - Unobtrusive (almost covert) form factor
 - Part of getting dressed

MAS.531 / MAS.131 Computational Camera and Photography Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.