Problem Set 5

MAS 622J/1.126J: Pattern Recognition and Analysis

Due Monday, 6 November 2006

[Note: All instructions to plot data or write a program should be carried out using either Python accompanied by the matplotlib package or Matlab. Feel free to use either or both, but in order to maintain a reasonable level of consistency and simplicity we ask that you do not use other software tools.]

Problem 1: Parameter Learning by Estimation and Maximization

Consider data, $D = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ * \end{pmatrix} \right\}$, sampled from a two-dimensionaal (separable) distribution, $p(x_1, x_2) = p(x_1)p(x_2)$, with

$$p(x_1) = \begin{cases} \frac{1}{\theta_1} e^{-x_1/\theta_1} & \text{if } x_1 \ge 0\\ 0 & \text{otherwise} \end{cases} \quad p(x_2) = \begin{cases} \frac{1}{\theta_2} & \text{if } 0 \le x_2 \le \theta_2\\ 0 & \text{otherwise} \end{cases}$$

and a missing feature value, *.

- a Start with an initial estimate, $\underline{\theta}^0 = \begin{pmatrix} 5\\7 \end{pmatrix}$, and analytically calculate the estimate, $Q(\underline{\theta}, \underline{\theta}^0)$ —the *estimate* step of the EM algorithm.
- b Find the $\underline{\theta}$ that maximizes your $Q(\underline{\theta}, \underline{\theta}^0)$ —the maximization step of the EM algorithm.

Problem 2: Baum-Welch algorithm and discrete HMMs

Download the datasets from the course webpage. The datasets consist of training and testing sequences belonging to two classes. Implement the Baum-Welch algorithm for training a discrete HMM.

- a Train two fully connected HMMs each with **one**^{*} hidden node (one HMM for each class of data) and transition probabilities.
 - i Implement the Viterbi algorithm to decode each test sequence using both HMMs. Show the log probability of each test sequence using each HMM.

- ii Compute the recognition accuracy on the entire test set.
- iii List the output probabilities and state transition probabilities of each HMM.
- iv State the threshold you are using and the maximum number of iterations.
- v Include a complete listing of your source code.
- b Repeat this problem (a) replacing **one**^{*} with **three**.
- c Repeat this problem (a) replacing **one**^{*} with **five**.