MAS836 – Sensor Technologies for Interactive Environments

Original images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Lecture 4 – Pressure Sensors Pt. 1

Very Basic Digital Noise Reduction

- Remove outliers
- Average the signals
 - Summing N signals results in a resolution improvement of a factor \sqrt{N}
 - Provided that measurements are uncorrelated and exhibit Gaussian statistics
 - Must not be quantization limited
 - I.e., you *need* some noise to start with!
 - Note that this is *not* usually true for pickup, which is from a correlated source!
 - Pickup noise can add in phase
 - Linearly!!!
 - L3 BGO story...

Position Encoders

- Displacement
 - Rotary or Linear Potentiometer
 - Linear encoder
 - Optical
 - Magneto-Acoustic
 - Shaft encoders
 - Rotary into Linear w. screw

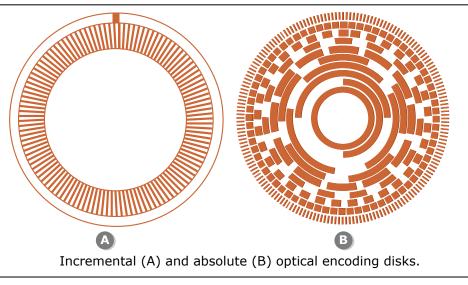
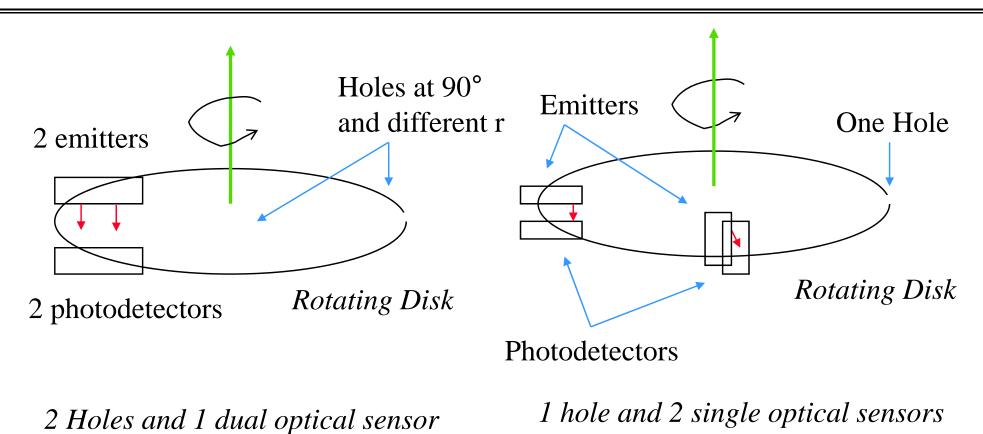
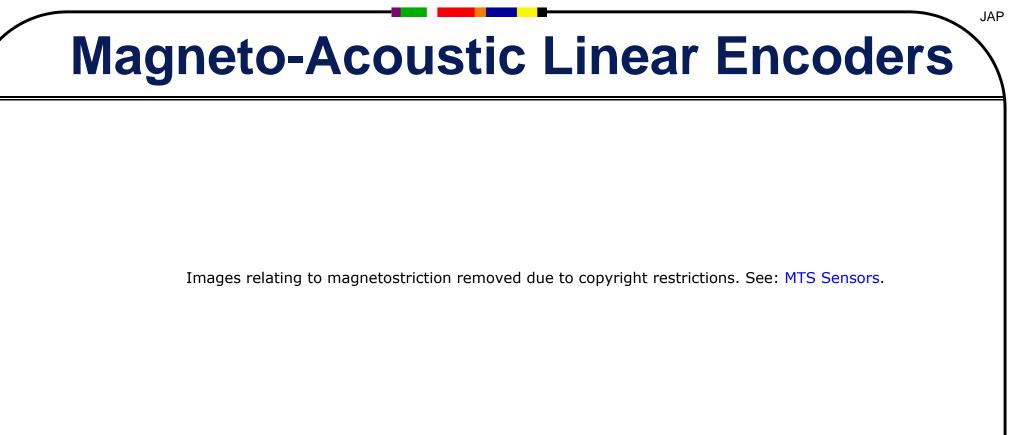



Image by MIT OpenCourseWare. (L) Incremental and (R) optical encoding disks.

Interface:	CANopen
Resolution/Revolution:	16 Bit = 65,536 steps
Revolutions:	up to 14 Bit = 16,384
Code	Binary
Housing Diameter:	58 mm
Shaft:	Full shaft 6 or 10 mm ø / hollow shaft 15 mm ø

Courtesy of FABRA Inc. Used with permission.

Quadrature Encoders Determine Direction


One sensor measures "I" and the other measures "Q" -> Direction determined by whether I leads Q in time or vice-versa *Can be spaced more closely, for rapid direction determination*

Linear Encoders

Optical encoders

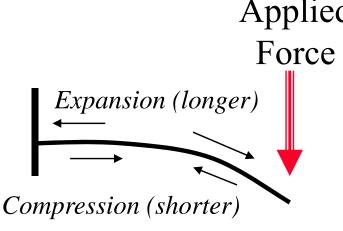
- Track micro marks
- 100 nm accuracy!
- Film encoders are in cheap printers

Screen shot of the webpage for Heidenhain Linear Encoders—sealed linear encoders and exposed linear encoders, removed due to copyright restrictions. See: Heidenhain.

- 1 mil per sample, 9 kHz updates
- Must measure T too!
- MTS Sensors

Pressure

Displacement into pressure


E.g., F = -kx, and P = F/A (force per area)

Strain into Force

Strain is defined by s = ΔL/L

Piezoresistivity

Applied

Membrane Switch

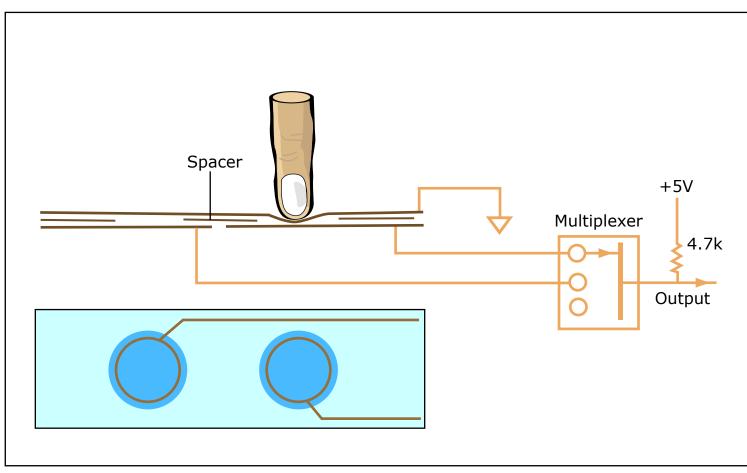
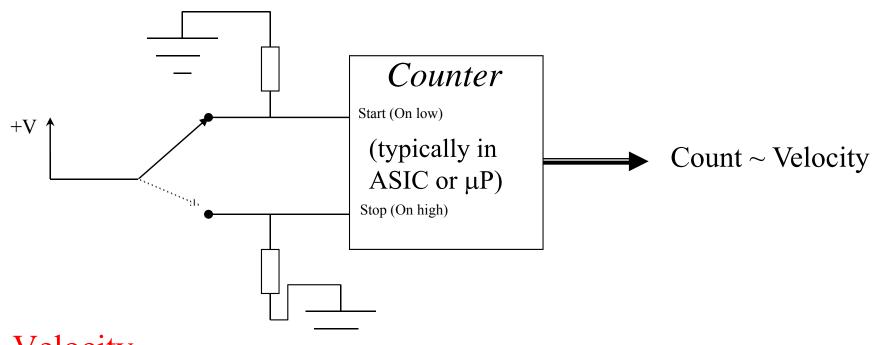
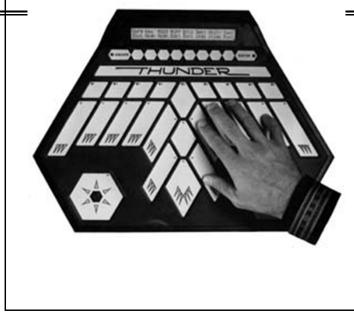



Image by MIT OpenCourseWare.

A membrane switch being used as a tactile sensor.

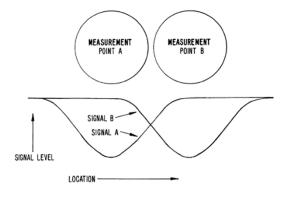
- Commercial can be printed and snap-assembled
 - Made by ALPS among others (switch floor too)
 - Typically polled in row-column fashion (e.g., drive columns, read rows)

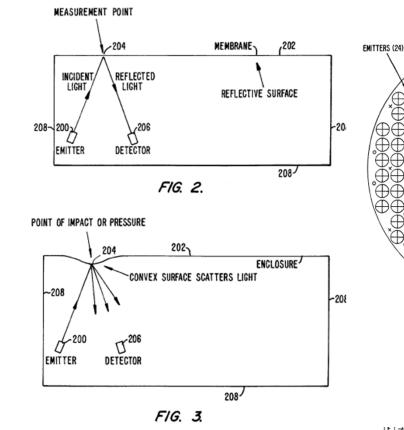
How a MIDI Keyboard Works



• Velocity

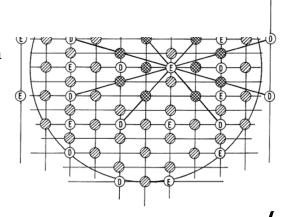
– Measure time difference between key transitions


- Aftertouch
 - FSR underneath keys
 - FSRs were developed for this purpose (Interlink)
 - Poly aftertouch has FSR under each key
 - Mono aftertouch has FSR under key bank


The Buchla Thunder

2/04

Courtesy of Buchla. Used with permission.



US Patent 5,913,260 - June 15, 1999 Donald F. Buchla

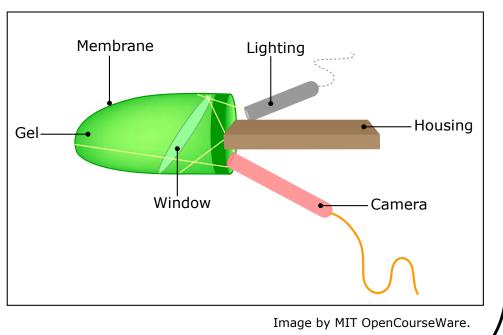
System and method for detecting deformation of a membrane

- Thunder 2 Tracks multipoint finger position optically using reflective back of mylar drumhead.
- Thunder 1 used capacitance

DETECTORS(24)

JAP

MEASUREMENT POINTS (208)


Optical Pressure Sensors

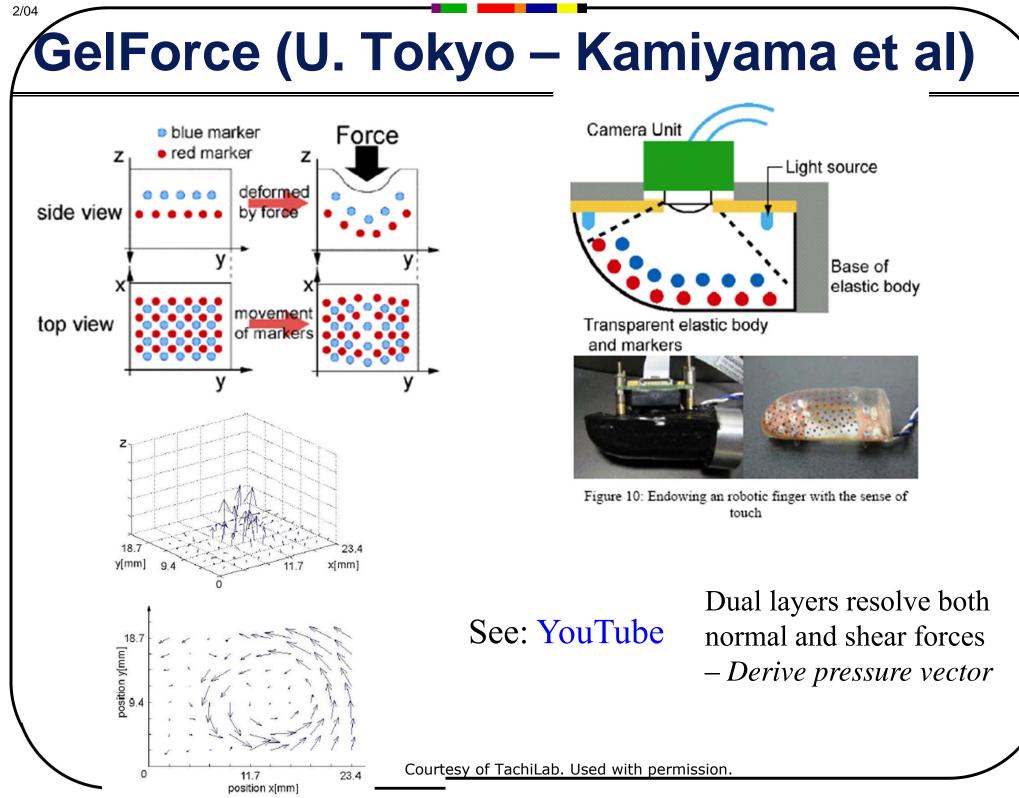
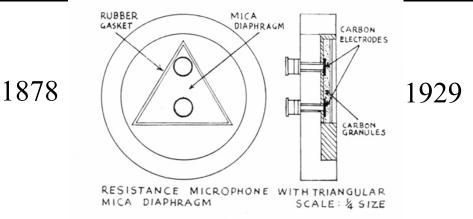


Figure 3: Camera view of membrane: (a) undeformed (b) in contact with an object.

© Unknonwn. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.


 Pressure Profile of deformable dot-matrix fingertip (Hristu, Ferrier & Brockett)

The Carbon Microphone – Sonic FSR

© Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

1628 N-1 Type Carbon Microphone

Microphone Characteristics

- A. Minimum Sensitivity @ 1 kHz with 85 mA(DC) Applied Current: 38 dBmV
- B. Impedance Range: 15-60 ohms

Conductive Foam

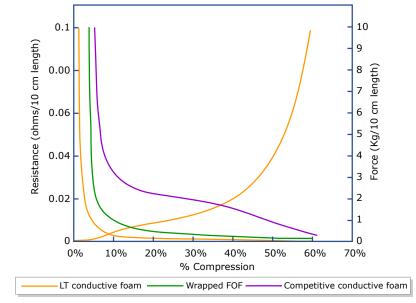
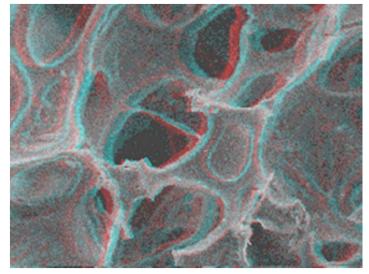



Image by MIT OpenCourseWare.

© Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Standard (3D!)

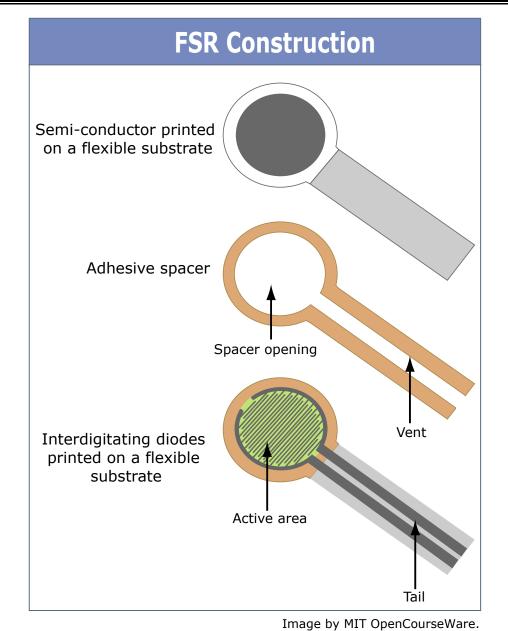
Photo courtesy of Collin Mel on Flickr. CC-BY-NC-SA

Photo courtesy of Jurvetson on Flickr. CC-BY

Metalized

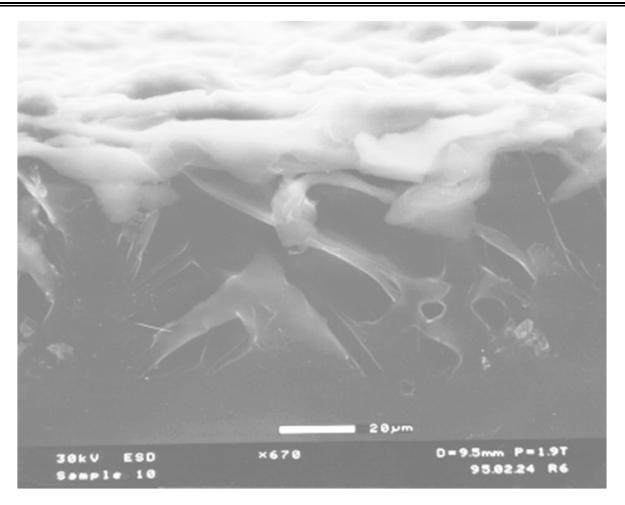
Resistive (conductive) Elastomers

Image of a freshly made polymer sensor removed due to copyright restrictions. See 'ForSE FIElds' - Force Sensors For Interactive Environments.


Early Z-Tiles from the University of Limerick

McElligott, L., et al, 'ForSe FIElds' - Force Sensors for Interactive Environments," in UbiComp 2002

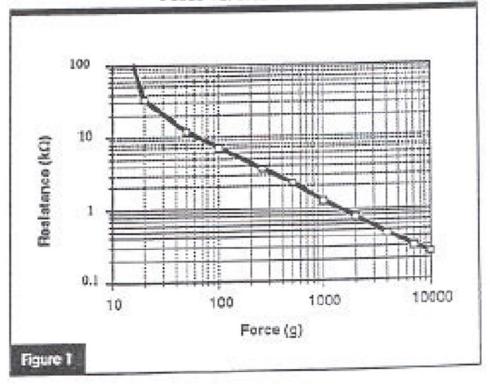
- Carbon or silver-loaded silicone rubber
- Dynamic range limits, hysteresis, longevity...
- Commercial conductive rubber from:
 - "Zoflex" from Xilor, inc. (rfmicrolink.com)

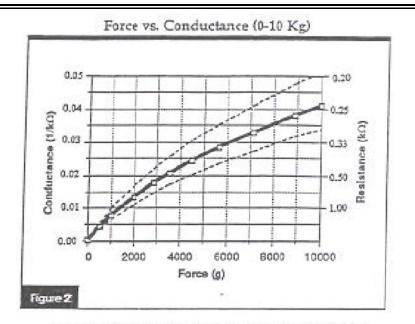

See: Koehly et al, "Paper FSRs and Latex/Fabric Traction Sensors: Methods for the Development of Home-Made Touch Sensors," Proc. Of NIME 06

Force Sensitive Resistors

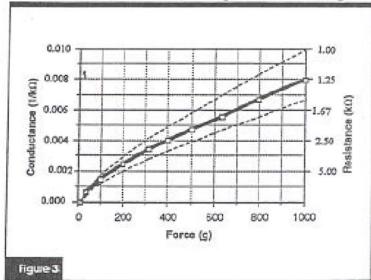
- Composite structure
 - Top, ink, electrodes
 - Flat, but can be fragile to shear force (delamination) and sensitive to bend

Conductive Polymers and FSR's



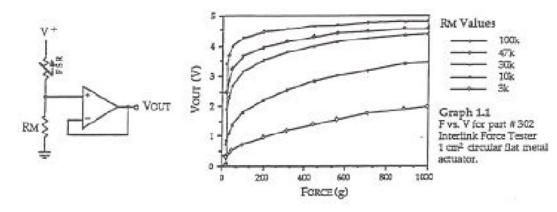

© unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

• Microphotograph, showing conductive ink and metalization from Interlink FSR

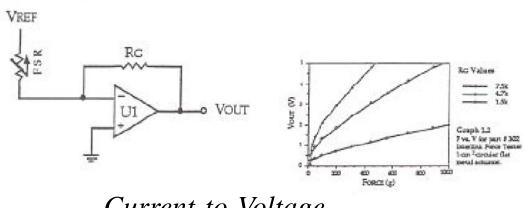

FSR Characteristics

Force vs. Resistance

Force vs. Conductance (0-1 Kg) Low Force Range


- 3-4 decades of sensitivity, 0.01 100 PSI, hundreds of Ω to 10 Meg Ω
 - Depending on device & Manufacturer
 - "---" is part-part repeatability bound
 - Typically ±15% ±25% for Interlink

- Sensitive to temperature, humidity...

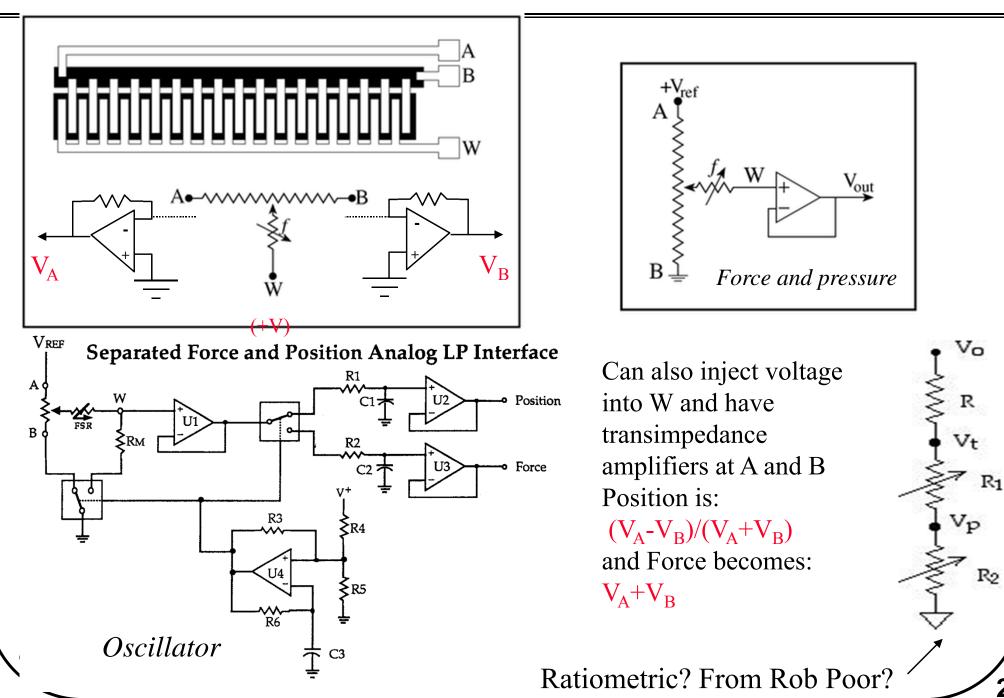

2/04

JAP

FSR Interface Circuits

Voltage Divider

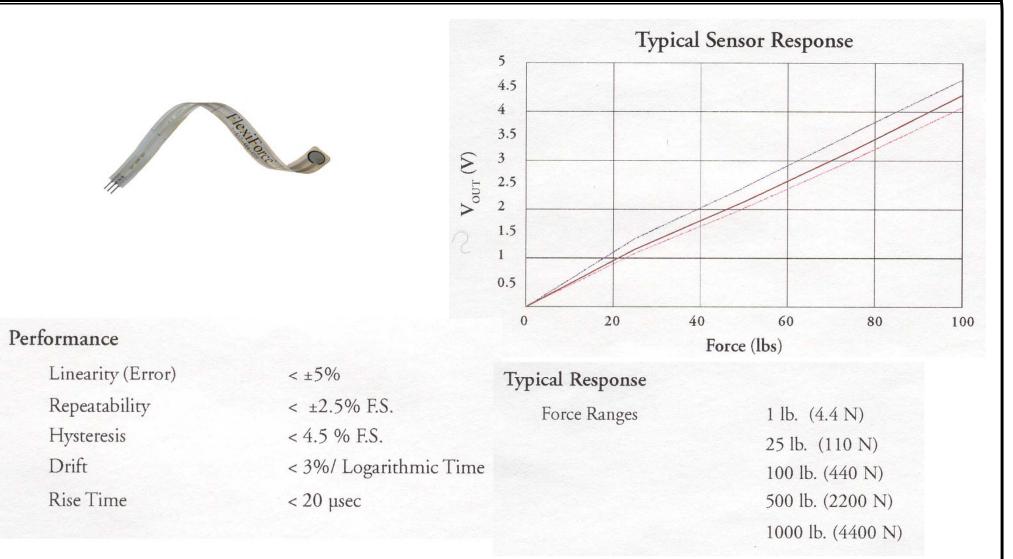
Current-to-Voltage


© Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Voltage Divider
 - Very nonlinear; switch characteristic
 - Only buffer needed
- Current Mode
 - Smoother range but

(Less headroom)

Transimpedance amp


The FSR Potentiometer

© Unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

JAP

The FlexiForce (from TekScan)

\$5.767 \$5.767	OL ON OH	 U.S. Patent No. 6.272.936 	- FlexiForce [®]	01 2 025 0100	
45-35-75			1-617-464-4500	0100	000000

Tekscan Specs

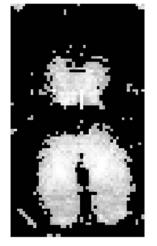
Table 1. Specifications of Representative Tactile Sensors

	Human	Fingerprint	Smart Skin
	Skin [i]	Imaging Sensor [vii]	Smart Skin
Resolution (mm)	2	0.1	0.1-10
Sensor Area (mm ²)	25x25	13x20	$10^2 - 10^7$
Number of Sensels	10 ²	$\sim 10^4$	10^{2} - 10^{6}
Sensel Force Range (N)	0.4-10	switch	0.05-100
Linearity	Moderate	-	High
Hysteresis	Low	-	Very Low
Compliance	Yes	No	Yes
Bandwidth (Hz)	100	~10	100
Operating Temperature (°C)	-20 to 60	-10 to 45	-40 to 100

Courtesy of TekScan. Used with permission.

Force Imaging

JAP


30

Pressure images by Ken Perlin have been removed due to copyright restrictions.

Car driving over force imaging plate

Courtesy of Hong Tan. Used with permission. Hong Tan, Purdue They do chair seats and beds too... Ken Perlin/NYU make transparent "interpolating" FSRs

2/04

QTC Pressure Sensors

- Made by Peratech in the UK
- Quantum Tunneling Composites
- Metal-filled polymers, no direct conductive path
 - Current flows via quantum tunneling (AC readout w. capacitance?)
 - More tunneling (hence current) with more pressure
 - No zero-point deadband, smoother response, more durability (maybe)

Dimensions Form Factor Active Area Lead Length Thickness Electrical Stand-off resistance ¹	Circular Smm 35mm 1mm 10 ⁸ ohms N - 100 N	QSRC025130 Circular 13mm 35mm 1mm 10 ⁸ ohms 0 N - 100 N	Q55C025400 Square 40mm 35mm 1mm 10 ⁸ ohms 0 N - 100 N	120000 - 100000 -	- •	ING PERF Resistance		E	
Form Factor Active Area Lead Length Thickness Electrical Stand-off resistance ¹ Force sensitivity range ² Part-to-part force repeatability ³	5mm 35mm 1mm 10 ⁸ ohms	13mm 35mm 1mm 10 ⁸ ohms	40mm 35mm 1mm 10 ⁸ ohms	100000	- •	and the second		E	
Active Area Lead Length Thickness Electrical Stand-off resistance ¹ Force sensitivity range ² Part-to-part force repeatability ³	5mm 35mm 1mm 10 ⁸ ohms	13mm 35mm 1mm 10 ⁸ ohms	40mm 35mm 1mm 10 ⁸ ohms	100000		Resistance	e vs Force		
Lead Length Thickness Electrical Stand-off resistance ¹ Force sensitivity range ² Part-to-part force repeatability ³	35mm 1mm 10 ⁸ ohms	35mm 1mm 10 ⁸ ohms	35mm 1mm 10 ⁸ ohms	100000		Resistance	e vs Force		
Thickness Electrical Stand-off resistance ¹ Force sensitivity range ² Part-to-part force repeatability ³	1mm 10 ⁸ ohms	1mm 10 ⁸ ohms	1mm 10 ⁸ ohms	100000					
Electrical Stand-off resistance ¹ Force sensitivity range ² Part-to-part force repeatability ³	10 ⁸ ohms	10 ⁸ ohms	10 ⁸ ohms	100000					
Stand-off resistance ¹ Force sensitivity range ² Part-to-part force repeatability ³					•				
Force sensitivity range ² 0 M Part-to-part force repeatability ³					•				
Part-to-part force repeatability ³	N - 100 N	0 N - 100 N	0 N - 100 N	S					
				a 80000 ·	- 🔌 🛛				
Single part force repeatability ³	±10%	±10%	±10%	2					
	±2%	±2%	±2%	00008 gistance /					
Force resolution	0.5%	0.5%	0.5%	8 40000 ·	-				
Max current 10	100µA/cm2	100µA/cm ²	100µA/cm2	_		-			
Environmental				20000	1				•
Temperature Range -30°C	C to 100°C	-30°C to 100°C	-30°C to 100°C	0		1			
Humidity 09	% - 100%	0% - 100%	0% - 100%		0 20	40	60	80	100
Lifetime > 1M cycle	cles at 10N	> 1M cycles at 10N	> 1M cycles at 10N		0 20	40	00	00	100

3. With repeatable actuation system

© Peratech Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

FSR Bendy Sensors

JAP

33

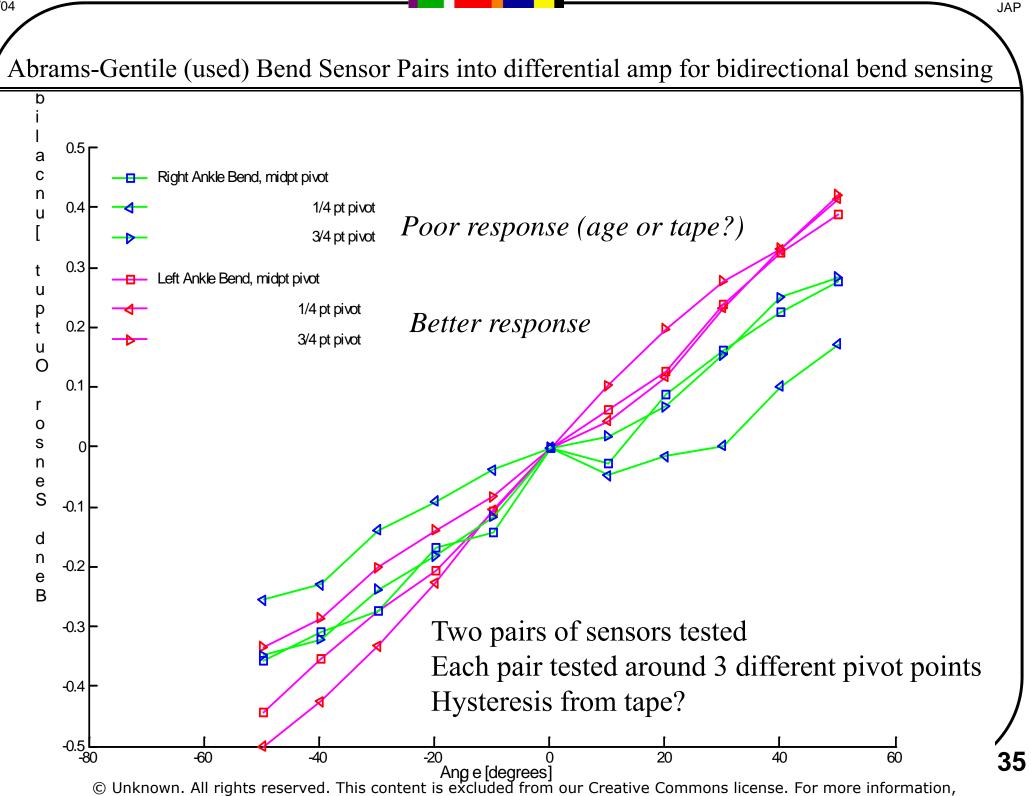
The Flex Sensor is a unique component that changes resistence when bent. An unflexed sensor has a nominal resistance of 10,000 ohms (10 K). As the flex sensor is bent the resistance gradually increases. When the sensor is bent at 90 degress its resistance will range between 30-40 K ohms.

The sensor measures 1/4 inch wide, 4 1/2 inches long and only .019 inches thick!

Courtesy of Images SI Inc. Used with permission.

Available from the Images Co. (for PowerGlove - made by "Abrams-Gentile)

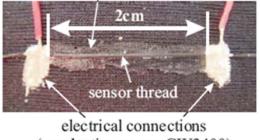
High-end versions made by Immersion for their CyberGlove


- 0.5° resolution, 1° repeatability, 0.6% max nonlinearity, 2-cm min bend radius These only measure bend in one dimension (expanding the FSR's on surface)
 - Conduction saturates quickly when contracted
 - Can measure bidirectional bend with 2 FSR's back-to-back (and diff amp)

Resolution and Calibration Tests (from Stacy Morris '04)

Bend Sensor calibration Pin Bendy Sensor with Batteries and bend according to printed protractor

Images removed due to copyright restrictions.


FSR calibration Apply known pressure via rubber bumper with materials tester

see http://ocw.mit.edu/fairuse.

Stretchy FSR "strain sensors"

attachment to textile with silicone film

(conductive epoxy CW2400)

Figure 2. Sensor thread attached to the textile with a silicone film.

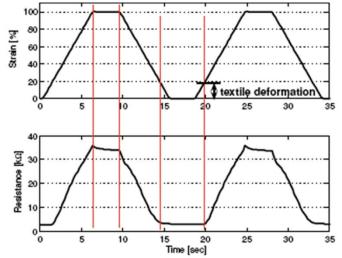
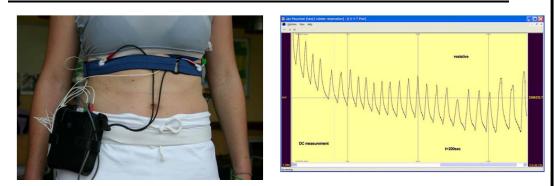



Figure 3. Typical response of sensor to a given strain (sensor length 2cm).

© ETH Zurich Wearable Computing Lab. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Recognizing Upper Body Postures using Textile Strain Sensors Corinne Mattmann, Oliver Amft, Holger Harms, Gerhard Tröster, and Frank Clemens (ETH Zurich) - Proc. Of ISWC 2007

"A novel strain sensor was used which was developed by EMPA, Switzerland [12]. The sensor thread consists of a commercial thermoplastic elastomer (TPE) filled with 50wt-% carbon black powder and changes resistivity with length. It is fiber-shaped with a diameter of 0.3mm and has, therefore, the potential to be fully integrated into textile. In this prototype setup, the sensor was attached with a silicone film (see Fig. 2) which enables a measurement range of 100% strain. The length of the sensor was chosen to be 2cm."

Courtesy of TMS International. Used with permission. TMS International - breathing belts (resistive) http://www.tmsi.com

More on fabric-compatible sensors in Bio Lecture...

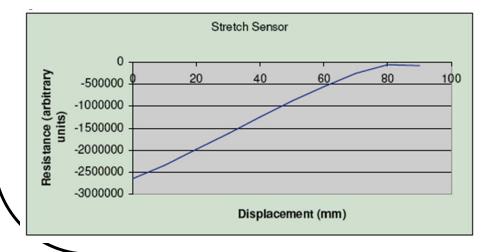
Merlin Stretch Sensors...

Merlin Stretch Sensor

The Merlin Stretch Sensor uses the latest 'Smart' material technology to give a uniquely flexible sensor, that can literally take measurements bent around corners or be woven into fabric.

⊕- enlarge

Comercial stretchy resistive sensor


- Flexible sensor, bends around corners!
- Small form factor 2mm Cord
- Economical

What is it?

The Stretch Sensor is a flexible cylindrical cord with spade electrical fixings at each end. The sensor behaves like a variable resistor, the more you stretch it the higher the resistance.

How does it work?

As the length of the Stretch Sensor alters so does it's resistance. For each centimeter of length change there is a resistance change of approximatly 400 Ohms/cm.

http://www.merlinrobotics.co.uk

2/04

Courtesy of Merlin Robotics. Used with permission.

MAS.836 Sensor Technologies for Interactive Environments Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.