User Modeling, Recommender Systems & Personalization

Pattie Maes MAS 961- Week 6

Recommender Systems: General idea

Personalization: General Idea

Personalization = user adaptive systems

interaction is adapted based on data about an individual user Eg personal websites, personalized tutoring, personalized recommendations, etc.

Why relevant to this class?

Ambient Intelligence =

Ubiquitous Computing + Intelligent Interfaces (eg personalization)

User Profile

Source of User Profile

- Entered explicitly by user (questionnaire)
- Gathered implicitly by system
 - Observing/recording person's behavior
 - Learning/inferring interests/preferences/level...
- Combination of both approaches

• Another dimension: public/private

Acquired User Profiles

Form:

- raw data
- generalization (find patterns & generalize)
 - statistical ML methods
 - knowledge based ML methods
- keep both forms (to relearn/adapt over time)
 - keep "window" of raw data

Generic User Modeling

- Separate user modeling from applications/use
 - Reusable across applications
- Still mostly theory, not practice
- State of art: every application does its own user modeling specific to the task at hand

Recommendation algorithms

- Case-based/Stereotype based
- Feature-based/Content-based
- Collaborative Filtering

Case-Based/Stereotype-Based

- Acquire info about user
- Classify user in a bucket (as a particular "case" or stereotype) based on facts about user
 - Eg soccer moms, poor grad student, ... (there may be a hierarchy, rather than list of stereotypes)
- Certain assumptions about what appeals to a certain stereotype
 - Eg which items appeal to certain case/category of users
- Recommend those to the user
- Example: demographics-based recommendations

Feature-based/Content-based Filtering

- One approach: learning from item examples
 - Look at all items a user likes
 - Features of items
 - Find patterns among items and generalize (often also involves clustering)
 - Then recommend more items that fit same pattern(s)
 - Eg recommend movies based on features of those movies (genre, actors, ...)

Feature-based/Content-based Filtering

- Another approach: learning stereotypes from user examples
 - Given a category of items
 - Given set of users with features & values
 - Given information on which users like what items
 - Generalize on what types of users like a category of items
 - Recommend items based on what case user falls into

Knowledge-based Techniques

• Special case of feature-based where background knowledge of item space or user space is used to generalize

- Eg use ConceptNet or Interest Map
 - Know what people are related (InterestMap)
 - Know what items are related (ConceptNet)

Collaborative Filtering

Algorithms: recommend items based on item similarities (rows) or based on user similarities (colums), typically weighted average of K nearest neighbors, with weight inverse proportional to distance

Pros & Cons different techniques

- Collaborative filtering
 - Pros:
 - Does not require analysis of the items (features)
 - Better at qualitative judgements
 - Cons:
 - Bootstrapping
 - Ratings required
 - Critical mass required

Mixed Techniques

- Use ratings as additional features in the generalization task
 - ML algorithm can learn what features are best predictors (content features or ratings by others or both)

User Profile

• Short term information

Eg current context, current activity/focus

- Long term info
 - Eg longer term interests
- You typically want to use both
- Update them on different timescale

Location of User Profile

- Centralized
 - Generic
 - Device & application independent
 - Easier to apply generalization across users
- Distributed
 - Mobile use
 - Better privacy
- Mixed forms

Tunnel vision problem & importance of serendipity

- Feedback loop:
 - Systems recommends items of type X
 - User consumes items of type X
- Importance of "exploration" or "serendipity" (recommending items outside user's interest space)

Avoiding the tunnel vision problem

Columbus Sunday Press Columbus

Marble Cliff, Beautiful Suburb of the Capital City Will Tomorrow Assume, In Reality, All the Dignity of an Incorporated Village---Election of Officers to be Held. Missing Link Supplier First of the Suburb Delightful Scenery. View Heights. Arli Marble Cliff, Sellsville School Building _____ Handsome New Buildings George Unlin the Pinnee In the Heart of the Hamlet, Showing a Village Store, Public School, Stree Railway and Village Homes. e Subdivisions Include

The Country Club

Highlight recommendations ★ but present all choices

Other problems

- Noisy/incorrect data used in user modeling
 - User needs to be able to inspect & "correct" user model
- Trust
 - Recommendation system needs transparency!!
- Privacy
- Control

Variant: one person as recommender

- E.g. see world through Marvin's eyes
- Have a famous critic as your guide

Next Week: Ambient & Tangible Interfaces

- Required reading:
 - Ishii & Ullmer, Media Lab, Tangible bits, Chi 97,

http://web.media.mit.edu/~anjchang/ti01/ishiichi97-tangbits.pdf

Next Week: Ambient & Tangible Interfaces

- Gross' work- Frauenhofer Amy
 - Ambient Interfaces: design challenges & recommendations

http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber= 994231

- Ambient Interfaces in a web-based theater of work
- Cohen & McGee, Tangible Multi-modal Interfaces Amy <u>http://www.cse.ogi.edu/CHCC/Publications/cacm-</u> <u>actual.pdf</u>
- Personal & Ubiquitous Computing Journal Vol 8 Nr 5 Special Issue on Tangible Computing – selection – Edison (2) & Minna (2)