
MIT Student
May 10, 2010
21M.380 – C. Ariza

GA Sonic System Report

 Genetic Algorithms (GA’s) have been applied since the 1950’s to simulate the

evolution of a population [1]. Soon enough, they became a widely known method to

solve optimization problems in computer science [2] and several genetic

algorithmic systems were developed, such as Evolver [3]. Genetic algorithms are

not only suited for computer science; they may also be applied to artistic domains.

For example, Ariza discusses an alternative application [4] of GA’s. Rather than

moving towards a complex solution, Ariza’s genetic algorithm system pulls from a

trajectory of rhythmic populations that moves towards a simple solution. My work

with Genetic Algorithms also focuses on creating interesting trends from an

evolutionary process that moves towards a simple solution. I show that my system

can be applied to granular synthesis to make compelling gestures.

For my sonic system, I employ many of the principals described in Magnus’s

overview of genetic algorithms [5]. Solutions are mapped onto chromosomes, which

contain many parameters encoded as genes (or alleles). Each chromosome can be

rated with a fitness function by calculating the error from that chromosome to a

target solution. Figure 1 shows a sample population with 3 chromosomes, each of

which has 3 alleles.

Figure 1 Populations contains many chromosomes, each of which store multiple alleles.

My GA system comes with several alleles and chromosomes. The single note

allele contains a single midi value, and is used in single note chromosomes and multi-

note chromosomes (chord chromosomes). The more interesting grain allele holds

several important parameters for granular synthesis and is employed in the grain

chromosome. My system also provides basic fitness functions that assign lower

fitness to chromosomes that are farther from a target chromosome.

A simulation is run, in which some chromosomes reproduce, and others die.

While traditionally fitness probabilistically determines which chromosomes

reproduce, as described by Magnus, in my system every chromosome has an equal

chance of reproducing. However, in my system less fit chromosomes have a higher

chance of being replaced by an offspring. The outcome is similar: less fit

chromosomes produce less offspring because they are replaced sooner.

During reproduction, offspring chromosomes have a probability that they

will be mutated in several ways. Crossovers may occur between two parent

chromosomes, such that the offspring inherits some traits from one parent and

some traits from the other. Individual alleles may also undergo point mutation, in

which a single allele is mutated. For example, a note allele may be shifted up or

down a few half steps. Mutations combined with reproduction and dying pushes the

population in a direction towards a target.

At each step in the simulation, one or more chromosomes may be extracted.

Extraction can be determined by fitness (most fit chromosome or least fit

chromosome) or random. Extracted chromosomes are accumulated into an array.

The simulation ends when the most fit chromosome fitness, or the average

chromosome fitness reaches a certain threshold. Several simulations can be strung

together, to produce multi-trend gestures. The simulation process is summarized in

Figure 2. The corresponding code can be found in GA.py.

Figure 2 the control logic of Simulation and Step.

To demonstrate the capabilities of my GA system, I applied it to granular

synthesis. In granular synthesis, small pieces of sound, or grains, are played in

rapid succession to create larger events as described by Roads [6]. The interesting

gestures of granular synthesis are made possible due to the collective trends applied

to grains over time. The compelling trends that can be expressed with genetic

algorithms are what motivated me apply genetic algorithms to granular synthesis.

I chose to vary grains according to three parameters that Roads identifies as

important: duration, frequency, and amplitude. For this reason, each grain allele

encodes three values, one per parameter. Each grain chromosome stores it’s own

grain allele. Grain chromosomes can also undergo crossover mutations, in which an

offspring inherits one or more parameter from one parent and the rest from another

parent. Grain chromosomes can also undergo point mutations, in which one or

more parameters of the offspring’s allele are increased or decreased. The fitness of

a grain is measured with respect to the distance between itself and a target grain. A

larger distance produces a lesser fitness.

I created three sound samples of genetic algorithms applied to granular

synthesis to demonstrate different features of my system. In all three of my

samples, output from the genetic algorithm was mapped to granular synthesis

parameters in the csoundNative mode of athenaCL, using the LineGroove texture

module to create SineUnitEnvelope grains (see Line_Groove.py). In sample1,

random selection is used to generate a gesture where grains go from long duration,

low volume, and low pitch, to short duration, high volume, and high pitch. This

creates a linear transformation with a bit of up and down randomness. In sample2, I

show how the selection and mutation rate affect the gesture, by applying a best

selection and a high mutation rate to the same population. As seen, the solution

converges much faster (~150 steps as opposed to ~750 steps), and the fitness of the

recorded samples strictly increases. In sample3, I use multiple-selection to select

the best-fit chromosome and the least fit chromosomes, and play them in parallel.

In this sample, grains go from high pitch, low volume, and short duration to low

pitch, low volume, and long duration. Sample1, sample2, and sample3 showcase the

features of my system and it’s ability to be applied to specific domains, such as

granular synthesis.

Others have applied genetic algorithms to granular synthesis, such as

Fijinaga [7]. My system differs in several ways. First, where Fijinaga’s GA deploys

bit manipulation mutation, my system applies domain specific mutation. Second,

my granular synthesis chromosome utilizes a fitness functions specific to its domain.

For example, rather than making the fitness function be additive over the different

granular parameters, I deploy a different fitness functions for each parameter and

take the minimum of these functions to represent the fitness of a chromosome. The

result is that all of the features converge at the same rate, which I feel is desirable

for granular synthesis. Finally, my system is different because of its flexible

selection strategy.

To summarize, my system can be formally described according to Ariza’s

seven descriptors [8]. My system produces semi-macro-scale gestures (not full

pieces, but not just single events) by combining micro-scale sounds according to a

non-real-time process model. While the granular synthesis extension is tied to a

single idiom, the system as a whole exhibits a plural idiom-affinity. The GA system

is openly extendable – it is coded generally enough such that users can define their

own functions and / or subclasses to alter or extend it. My genetic algorithm follows

a generative event production model because parameters are generated and pulled

from the population. It is conceivable that one could use it as a transformational

tool by supplying key events from a source as targets for the GA’s fitness function.

My system does not directly produce sound – it must be mapped to an external

sound source, such as AthenaCL as I did when generating granular synthesis

samples. Finally, the user interacts with my system through the python scripting

language. They can either supply arguments to one of many functions defined at the

bottom of GA.py to run a simulation, or expose more parameters by writing

functions of their own.

I have several ideas for further research that would build upon my sonic

system. First, it would be interesting to experiment with a population that could

grow or shrink over time. Varying-sized populations could provide an interesting

application to granular synthesis in which the density of grains is proportional to

the population size. Second, it would be informative to apply the GA to domains

other than granular synthesis. It would also be interesting to gauge the ease of use

with which an outside party could extend or use my system. Finally, it would be

useful to support more chromosomes, such as a scale chromosome or a key

chromosome and see how they could be applied to generating interesting gestures.

Sources

[1] Fraser, Alex (1957). "Simulation of genetic systems by automatic digital

computers. I. Introduction". Aust. J. Biol. Sci. 10: 484–491.
[2] Schwefel, Hans-Paul (1981). Numerical optimization of computer models

(Translation of 1977 Numerische Optimierung von Computor-Modellen
mittels der Evolutionsstrategie. Chichester ; New York: Wiley.
ISBN 0471099880.

[3] Markoff, John (1990-08-29). "What's the Best Answer? It's Survival of the
Fittest". New York Times.
http://www.nytimes.com/1990/08/29/business/business-technology-what-s-
the-best-answer-it-s-survival-of-the-fittest.html.

[4] Ariza, C. 2002. "Prokaryotic Groove: Rhythmic Cycles as Real-Value
Encoded Genetic Algorithms." In: Proceedings of the International Computer

Music Conference. San Francisco: International Computer Music
Association. 561-567. Internet: http://www.flexatone.net/docs/pgrcrvega.pdf

[5] Magnus, C.: Evolving electroacoustic music: the application of genetic
algorithms to time-domain waveforms. In: Proceedings of the 2004
International Computer Music Conference. (2004) 173–176.

[6] Roads, C. (1988). ‘Introduction to Granular Synthesis’ Computer Music
Journal. MIT Press 12(2): 11-13.

[7] Fijinaga, I., and J. Vantomme. 1994. Genetic algorithms as a method for
granular synthesis regulation. Proceedings of the International Computer
Music Conference. 138-41.

[8] Ariza, C. 2005. "Navigating the Landscape of Computer-Aided Algorithmic
Composition Systems: A Definition, Seven Descriptors, and a Lexicon of
Systems and Research." In Proceedings of the International Computer
Music Conference. San Francisco: International Computer Music

Association. 765-772. Internet: http://www.flexatone.net/docs/nlcaacs.pdf

http://en.wikipedia.org/wiki/Alex_Fraser_%28scientist%29
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0471099880
http://www.nytimes.com/1990/08/29/business/business-technology-what-s-the-best-answer-it-s-survival-of-the-fittest.html
http://www.nytimes.com/1990/08/29/business/business-technology-what-s-the-best-answer-it-s-survival-of-the-fittest.html
http://www.nytimes.com/1990/08/29/business/business-technology-what-s-the-best-answer-it-s-survival-of-the-fittest.html
http://www.nytimes.com/1990/08/29/business/business-technology-what-s-the-best-answer-it-s-survival-of-the-fittest.html
http://www.nytimes.com/1990/08/29/business/business-technology-what-s-the-best-answer-it-s-survival-of-the-fittest.html
http://www.flexatone.net/docs/pgrcrvega.pdf
http://www.flexatone.net/docs/nlcaacs.pdf

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

