
Chapter 13. Meeting 13, Approaches: Non-Standard Synthesis 

13.1. Announcements 

•	 Musical Design Report 3 due 6 April 

•	 Start thinking about sonic system projects 

13.2. The Xenakis Sieve 

•	 A system (notation) for generating complex periodic integer sequences 

•	 Described by Xenakis in at least six articles between 1965 and 1990 

•	 Xenakis demonstrated application to pitch scales and rhythms, and suggested application to many 
other parameters 

•	 “the basic problem for the originator of computer music is how to distribute points on a line” 
(Xenakis 1996, p. 150) 

•	 “the image of a line with points on it, which is close to the musician and to the tradition of music, 
is very useful” (Xenakis 1996, p. 147) 

13.3. The Xenakis Sieve: Basic Components 

•	 Residual Classes: integer sequences based on a modulus (period) and a shift 

•	 Residual class 2@0: {..., 0, 2, 4, 6, 8, 10, 12, ...} 

•	 Residual class 2@1: {..., 1, 3, 5, 7, 9, 11, 13, ...} 

•	 Residual class 3@0: {..., 0, 3, 6, 9, 12, 15, ...} 

•	 Sieves combine residual classes with logical operators 

•	 Sieve 3@0 | 4@0 : {..., 0, 3, 4, 6, 8, 9, 12, ...} 

•	 Sieve 3@0 & 4@0 : {..., 0, 12, 24, ...} 

•	 Sieve {-3@2&4} | {-3@1&4@1} | {3@2&4@2} | {-3@0&4@3}: {..., 0, 2, 4, 5, 7, 9, 11, 12, 
...} 

•	 Notation 

•	 Notations used by Xenakis: 
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• A new notation (Ariza 2005c) 

Modulus number “at” shift value: 3@5 

Logical operators and (&), or (|), and not (-) 

Nested groups with braces: {-3@2&4}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3} 

13.4. An Object Oriented Implementation of the Sieve in Python 

• sieve.py: a modular, object oriented sieve implementation in Python (Ariza 2005c) 

• A low level, portable interface 

• 

>>> from athenaCL.libATH import sieve, pitchTools

>>> a = sieve.Sieve('{-3@2&4}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3}')  

>>> print a

{-3@2&4@0}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3} 

>>> a.period()

12  
>>> a(0, range(0,13)) # one octave segment as pitch class

[0, 2, 4, 5, 7, 9, 11, 12]

>>> a.compress()

>>> print a 

6@5|12@0|12@2|12@4|12@7|12@9

>>> a.expand()

>>> print a

{-3@2&4@0}|{-3@1&4@1}|{3@2&4@2}|{-3@0&4@3}
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>>> a(0, range(0,12), 'wid')

[2, 2, 1, 2, 2, 2]

>>> a(0, range(0,12), 'bin')

[1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1]

>>> a(0, range(0,12), 'unit')

[0.0, 0.18181818181818182, 0.36363636363636365, 0.45454545454545453, 

0.63636363636363635, 0.81818181818181823, 1.0]


>>> [pitchTools.psToNoteName(x) for x in a(0, range(49))]

['C4', 'D4', 'E4', 'F4', 'G4', 'A4', 'B4', 'C5', 'D5', 'E5', 'F5', 'G5', 'A5', 'B5',

'C6', 'D6', 'E6', 'F6', 'G6', 'A6', 'B6', 'C7', 'D7', 'E7', 'F7', 'G7', 'A7', 'B7', 

'C8'] 


•	 sieve.py: SievePitch objects specialized for pitch space usage 

>>> from athenaCL.libATH import sieve

>>> a = sieve.SievePitch('6@5|12@0|12@2|12@4|12@7|12@9,c2,c4')

>>> a()

[-24, -22, -20, -19, -17, -15, -13, -12, -10, -8, -7, -5, -3, -1, 0]

>>> [x + 60 for x in a()]

[36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60]


•	 athenaObj.py: can create an athenaCL Interpreter object to automate athenaCL commands 

>>> from athenaCL.libATH import athenaObj

>>> ath = athenaObj.Interpreter()

>>> ath.cmd('tmo da')

>>> ath.cmd('pin a 5@3|7@2,c3,c8 4@2|6@3,c2,c4')

>>> ath.cmd('pih') 


13.5. The Sieve in athenaCL: Interactive Command Line 

•	 Using the interactive command-line, pitch sieves can be created, viewed, and deployed 

•	 Comma-separated arguments for complete specification: sieveString, lowerBoundaryPitch, 
upperBoundaryPitch, originPitch, unitSpacing 

•	 Example: 

PIn a 5@3|7@2,c2,c4,c2,1


•	 Multiple sieve-based multisets can be defined 

•	 Example: 

PIn b 5@3|7@2,c2,c4,c2,.5 5@1|7@8,c3,c6,c2,.5


13.6. Avoiding Octave Redundancy 

•	 Pitch sieves with large periods (or not a divisor or multiple of 12) are desirable 

•	 Can be achieved simply through the union of two or more moduli with a high LCMs 

>>> a = sieve.Sieve('3@0|4@0')Æ


138 



12 
>>> a.period()


>>> a = sieve.Sieve('3@0|5@0|7@0') 

>>> a.period()

105 
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143 

•	 Can be achieved through the use of moduli deviating from octave multiples (11, 13, 23, 25, 35, 
37) 

>>> a = sieve.Sieve('11@0|13@0')

>>> a.period()


>>> a = sieve.Sieve('11@1|13@2|23@5|25@6')

>>> a.period()

82225 


13.7. Deploying Pitch Sieves with HarmonicAssembly 

•	 Provide complete sieve over seven octaves 

•	 TM HarmonicAssembly used to create chords 

•	 Chord size randomly selected between 2 and 3 

•	 Rhythms and rests created with zero-order Markov chains 

•	 Command sequence: 

•	 emo m 
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• pin a 11@1|13@2|23@5|25@6,c1,c7 

• tmo ha 

• tin a 0 

• tie t 0,30 

• tie a rb,.2,.2,.6,1 

• tie b c,120 

• zero-order Markov chains building pulse triples 

tie r pt,(c,4),(mv,a{1}b{3}:{a=12|b=1}),(mv,a{1}b{0}:{a=9|b=1}),(c,.8) 

• index position of multiset: there is only one at zero 

tie d0 c,0 

• selecting pitches from the multiset (indices 0-15) with a tendency mask 

tie d1 ru,(bpl,t,l,[(0,0),(30,12)]),(bpl,t,l,[(0,3),(30,15)]) 

• repetitions of each chord 

tie d2 c,1 

• chord size 

tie d3 bg,rc,(2,3) 

• eln; elh 

13.8. Reading: Berg. Composing Sound Structures with Rules 

• Berg, P. 2009. “Composing Sound Structures with Rules.” Contemporary Music Review 28(1): 75-87. 

• How did the PDP-15 affect what techniques were explored at the Institute of Sonology 

• Given the music, find the rules: how is this different than analytical approaches? 

• What is non standard about non-standard synthesis? 

• What is the relationship of Berg’s ASP to PILE 
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13.9. Non-Standard Synthesis: Xenakis and Koenig 

•	 Both began with techniques for creating score tables 

•	 Both explored apply this techniques to sound construction 

•	 Both rejected acoustic models of sound creation 

•	 Both employed techniques of dynamic, algorithmic waveform generation 

13.10. Tutorial: a Dynamic Stochastic Wavetable 

•	 Looping through an array at the audio rate creates a wave table 

[tabread4~] interpolates between points for any [phasor~] rate 

•	 Randomly place points within the table at a variable rate controlled by a [metro] 

[tabwrite] lets us specify index position, value to write to 

Can only be done at the event rate (1 ms updates) 
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•	 Randomly draw line segments instead of points 

[until] will send out as many bangs as provided as an argument 

[counter] can receive a new minimum to designate start index for each segment generation 
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•	 Randomly draw line segments instead of points 

Use [wrap] to ensure points stay within table 

Set max of [counter] table 

Record output to a new file with [writesf~] 
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13.11. Non-Standard Synthesis: Xenakis and Koenig 

•	 Both began with techniques for creating score tables 

•	 Both explored apply this techniques to sound construction 

•	 Both rejected acoustic models of sound creation 

•	 Both employed techniques of dynamic, algorithmic waveform generation 

13.12. Koenig: SSP 

•	 Application of Koenig’s selection principles to waveforms 

•	 Proposed in 1972, implemented in 1977 

•	 Given a collection of discrete time and amplitude values, select from these to create waveform 
break points 

•	 Program was conversational, interactive 
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•	 Use of tendency masks to control segment generation produced directly audible results (Berg 
2009, p. 84) 

13.13. Xenakis: GENDYN 

•	 Dynamic Stochastic Synthesis 

•	 Explored by Xenakis over many years, starting in the 1970s 

•	 Not based on natural or acoustical models of sound 

•	 Algorithmically create waveforms by generating time and amplitude coordinates with second 
order random walks, then interpolating to create wave forms 

13.14. Reading: Hoffman. A New GENDYN Porgram 

•	 Hoffman, P. 2000. “A New GENDYN Program.” Computer Music Journal 24(2): 31-38. 

•	 Hoffman describes GENDYN as a “rigrous algorithmic composition procedure”; what does he 
mean? Is he correct? 

•	 How did Xenakis compose, at the largest scale, with GENDYN? 

•	 What does Hoffman say about Xenakis’s programming style? 

13.15. Second-Order Random Walks as ParameterObjects 

•	 Accumulator: permit consecutively summing values based on an initial value and the output of a 
ParameterObject 

:: tpmap 100 a,0,(ru,-1,1) 

accumulator, 0, (randomUniform, (constant, -1), (constant, 1))

TPmap display complete.


• Mask:Êconstrain the output of a ParameterObject within boundaries created by two 
ParameterObjects; boundaries can be limit, wrap, or reflect 
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:: tpmap 100 mask,reflect,(c,-1),(c,1),(a,0,(ru,-.5,.5))

mask, reflect, (constant, -1), (constant, 1), (accumulator, 0, (randomUniform,

(constant, -0.5), (constant, 0.5)))

TPmap display complete.


•	 Second order random walk: use (discrete) random walks to control the step size of another 
random walk 

:: tpmap 100 m,r,(c,-1),(c,1),(a,0,(ru,(bg,rw,(-.1,-.2,-.3,-.4,
-
.5)),(bg,rw,(.1,.2,.3,.4,.5))))

mask, reflect, (constant, -1), (constant, 1), (accumulator, 0, (randomUniform,

(basketGen, randomWalk, (-0.1,-0.2,-0.3,-0.4,-0.5)), (basketGen, randomWalk,

(0.1,0.2,0.3,0.4,0.5))))

TPmap display complete.


•	 Second order random walk: use (continuous) random walk to control the step size of another 
random walk 

:: tpmap 200 m,r,(c,-1),(c,1),(a,0,(ru,(m,r,(c,-.5),(c,0),(a,0,(ru,-

.5,0))),(m,r,(c,0),(c,.5),(a,0,(ru,0,.5)))))

mask, reflect, (constant, -1), (constant, 1), (accumulator, 0, (randomUniform,

(mask, reflect, (constant, -0.5), (constant, 0), (accumulator, 0,

(randomUniform, (constant, -0.5), (constant, 0)))), (mask, reflect, (constant,

0), (constant, 0.5), (accumulator, 0, (randomUniform, (constant, 0), (constant,

0.5))))))

TPmap display complete. 
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13.16. Listening: Xenakis 

•	 Audio: S.709 

•	 BBC interview with Xenakis on S.709 

•	 “Music is not a language. Every musical piece is like a highly complex rock with ridges and 
designs engraved wtihin and without, that can be interpreted in a thousand ways without a single 
one being the best or the most true.” (Xenakis 1987, p. 32) 

13.17. iGendyn: Gendyn as iPhone / iPod touch App 

•	 Created by Nick Collins 
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Courtesy of Nick Collins. Used with permission. 
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Courtesy of Nick Collins. Used with permission. 
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Courtesy of Nick Collins. Used with permission. 
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