
Beyond the Transition Matrix: A Language-Independent, String-Based Input Notation for
Incomplete, Multiple-Order, Static Markov Transition Values

Christopher Ariza

Abstract: While Markov chain generators have been employed throughout the history of
computer music as a tool for the creation of musical parameter values, input notations for
Markov transition values are often cumbersome and opaque. Rejecting the transition matrix
as an input notation, this paper offers a new language-independent, string-based input
notation for incomplete, multiple-order, static Markov transition values. Transition values
are given greater generality by accommodating multiple orders simultaneously, as well as the
specification of transitions with the use of limited single-operator regular expressions. A
complete Python implementation of this model is introduced, and high-level utilities and
object interfaces are demonstrated in athenaCL.

1. Introduction

Throughout the history of computer music Markov chain generators have been employed as a tool
for the creation of musical parameter values. There are two common approaches to configuring
these Markov processors. In the first case, a data sequence is analyzed, and then the resulting
transition data is stored in a transition matrix and used to generate new values. In the second case,
transition values are directly specified without derivation from analysis. In both cases, an intuitive
and transparent notation of transition values, beyond the common tabular matrix, is advantageous.
In the second case, a practical notation for Markov transition values offers a powerful and efficient
input notation for a wide range of Markov applications.

Rejecting the transition matrix as an input notation, this paper offers a language-independent, string-
based input notation for incomplete, multiple-order, static Markov transition values. Transition
values are given greater generality by accommodating multiple orders simultaneously, as well as the
specification of transitions with the use of limited single-operator regular expressions. A complete
Python implementation of this model is introduced, and high-level utilities and object interfaces are
demonstrated in athenaCL (Ariza 2005). These specialized object interfaces offer flexible rhythm
and parameter value generation. Additionally, the use of dynamic Markov order values is shown to
offer a flexible and previously unexplored resource.

As Charles Ames states, “by no means can Markov chains be said to occupy the cutting edge of
progress in automated composition…” (1989, p. 186). A Markov-based generator, further, has well-
known limitations: it is “incapable of generating self-embedded structures” (Cohen 1962, p. 155)
and, in general, “… is not complete enough by itself to consistently produce high quality music”
(Moorer 1972, p. 111). Nonetheless, Markov chains offer a practical tool: they can be used to
generate any type of value or value collection, they are discrete, they offer greater control than
uniform randomness, and, at higher orders, they produce sequentially related structures. This
practicality, however, is often encumbered by the parametric complexity of the traditional transition

1

ariza@flexatone.net

matrix. A challenge of computer-aided algorithmic composition (CAAC) system design is the
reduction of parametric complexity. This challenge can be met in part by the development of
intuitive, flexible, and language-independent string notations. Such notations permit the user to
supply complex specifications within a single argument, rather than supplying numerous arguments
to a function or text-entry form.

2. The Markov Chain and the Markov Transition String

A Markov chain, as used here, is a technique for generating a one-dimensional series of values or
symbols based on probabilities, where probabilities for each possible outcome are selected based on
zero or more past symbol formations. The number of past symbols a Markov chain uses to specify a
new symbol is the “order” of the Markov chain. In the case of orders greater than zero, it is useful
to label these past values as a “source,” and the probabilities as directing to possible “destinations”
(Ames 1989, p. 175). Source formations are referred to as “transitions.”

The history of Markov models is well documented in the mathematical and scientific literature
(Norris 1998, Bermaud 1999). Their origins are traced to their namesake, Russian mathematician A.
A. Markov (1856-1922). While some recent research has explored the Hidden Markov Model
(HMM) and the Markov Chain Monte Carlo, this article focuses only on the conventional Markov
“chain”: a discrete-time stochastic process. Only Markov chains with finite state spaces (or a finite
collection of possible symbols) are considered. While Markov chains are frequently displayed with
various state diagrams or as directed graphs, are often presented in the context of random walks, and
are frequently defined as regular (type 3) finite state grammars (Roads 1984, p. 14), this discussion
will only consider elementary models.

A Markov chain will be defined with a new string notation. This notation encodes key and value
pairs with brace-delimited values. For example, a key “x,” assigned a value of 0.3, is notated as
x{0.3}. Multiple key and value pairs can be defined in sequence without the use of spaces or
commas: x{0.3}y{0.7}.

A Markov chain produces output based on examination of zero or more past symbols. A zeroth
order Markov chain thus examines zero previous values; a third order Markov chain examines three
previous values. A “transition” defines a possible past symbol formation. Thus, a second order
Markov chain with two symbols (x, y) must define four transitions, or the possible past symbol
formations x:x, x:y, y:x, y:y (where “:” separates past symbols, and symbols read from left to
right as most remote to most recent). For each transition, probabilities may be assigned for the
generation of a new symbol. These probabilities may be specified as weights or as unit-interval
proportions. In the notation presented here, weights are defined by providing a destination symbol,
an “=” sign, and a numeric value; multiple weights, separated by the “|” symbol, may be specified.
Continuing the example above, the y:x transition may define an equal probability of producing
either symbol “x” or “y” with the following notation: x:y{x=1|y=1}. Alternatively, the x:x transition
could define the production of a “y” symbol nine out of ten times: x:x{x=1|y=9}. If a weight for a
symbol is not specified within a transition, the weight is assumed to be zero.

The zero order Markov chain has one transition, that of zero previous values. The “:” character
alone signifies the single transition of a zero order Markov chain. For example, a zero order
transition specification for the symbols above may be defined as :{x=3|y=4}.

2

A complete Markov transition string consists of two combined parts: symbol definitions and
transition weight definitions. Symbols are named with lower-case letters, and weight definitions
cannot refer to undefined symbols. Transition weight definitions may be provided for any number
of orders. For example, all weights defined in the previous examples may be combined with symbol
definitions to demonstrate a complete Markov transition string:

Example 1. A complete Markov transition string

x{0.3}y{0.7}:{x=3|y=4}x:y{x=1|y=1}x:x{x=1|y=9}

With numerous symbols and with orders greater than zero, the number of possible transitions
becomes large. To facilitate more compact transition string definitions, two features are
incorporated. First, all transitions not specified are assigned an equal-weight distribution for all
defined symbols. Second, transition weight definition keys may employ limited single-operator
regular expressions. Three operators are permitted: “*”, “-”, and “|”. The “*” operator matches any
defined symbol: using the symbols (x, y) defined above, the transition x:* will match x:x and x:y.
The “-” operator matches any symbol other than that specified: the transition x:-x will match x:y.
The “|” operator matches any number of symbols specified: the transition x:x|y will match x:x and
x:y.

The athenaCL system offers utility commands to both encode Markov strings (AUma) and use them
as generators (AUmg). The AUma command (AthenaUtility Markov Analysis), given a maximum
order and a sequence of symbols, returns the corresponding Markov string for all orders less than
and equal to the order specified. For example, the following athenaCL session encodes a simple
sequence of two symbols at orders zero, one, and two. Note that symbols (a and b) are automatically
assigned and that the symbol sequence, under analysis, is automatically wrapped.

Example 2. Creating a Markov transition string in athenaCL with AUma

:: auma 2 x x x x x x y y y y y y

AthenaUtility Markov Analysis

a{x}b{y}:{a=6|b=6}a:{a=5|b=1}b:{a=1|b=5}a:a:{a=4|b=1}a:b:{b=1}b:a:{a=1}b:b:{a=1|b=4}

The AUmg command (AthenaUtility Markov Generator) may be used to test the generation of
values from a Markov transition string with a static order. In the example below, a Markov transition
string, employing limited single-operator regular expressions to define a compact second order
Markov generator, is used to produce thirty values.

Example 3. Testing a Markov transition string in athenaCL with AUmg

:: aumg 30 2 x{a}y{b}z{c}z:-z{z=1}y:y|z{z=1|x=2}*:x{y=2|z=1}

AthenaUtility Markov Generator

b,a,c,a,b,a,b,a,b,b,a,c,b,c,a,b,b,a,c,c,a,c,a,b,b,a,b,c,a,b

3

3. The Markov Chain in the History of Algorithmic Composition

The Markov chain is one of the earliest techniques of CAAC. In the production of Experiment IV
of the Illiac Suite (1956), Lejaren Hiller and Leonard Isaacson used zero, first, and higher order
Markov chains (1959, pp. 141-148). Markov chains, with probabilities determined by analysis of
excerpts from Charles Ives’s Three Places in New England, were employed by Hiller and Robert Baker
in the Computer Cantata (1963; Hiller and Baker 1964, p. 68; Hiller 1970, p. 54) and implemented as
the ORD.n subroutine in MUSICOMP (Hiller 1969, pp. 72-73). An early and extensive exploration
of computer-based Markov analysis and generation is provided by Brooks et al. (1957). Additionally,
Gottfried Michael Koenig offers the related “ratio” selection method in Project Two (PR2, 1966);
while not labeled as a Markov model, this generator is equivalent to a zero order Markov chain
(1970). A similar utility is found in Barry Truax’s POD Programs with the ratio selection mode
(Buxton 1975, p. 224).

Prior to computer implementation, however, there was significant interest in generating one-
dimensional sequences with Markov chains. Claude E. Shannon and Warren Weaver’s 1949 text A
Mathematical Theory of Communication, based on an earlier text by Shannon (1948) and influenced by
the work of Norbert Wiener and his Cybernetics (1948), demonstrates the application of Markov
chains for the algorithmic generation of English sentences. Shannon and Weaver, calling these
generators stochastic processes, frequently suggest application to musical structures: “a system
which produces a sequence of symbols (which may, of course, be letters or musical notes, say, rather
than words) according to certain probabilities is called a stochastic process …” (1949, p. 11).

Following Shannon and Weaver, numerous studies employed Markov chains as musical generators.
These studies were done with manual, mechanical, and primitive computer calculations, and include
the analysis and generation of Western cowboy songs by Fred and Carolyn Attneave (Cohen 1962,
p. 143; Quastler 1955), the “Banal Tune-Maker” of Richard C. Pinkerton (1956), and the Markov
generator created in 1956 by John F. Sowa with a Geniac “Electronic Brain Kit” (Sowa 1957, 2005;
Cohen 1962, p. 143). Harry Olson and Herbert Belar, in 1961, built a sophisticated electronic
machine that, based on Markovian pitch and rhythm analysis of eleven Stephen Collins Foster
songs, produced and synthesized new melodies (1961). The analysis data of these Foster songs has
been frequently reproduced (Dodge and Jerse 1997, pp. 364-367). Additionally, the first edition of
Iannis Xenakis’s Musiques Formelles (1963) contained chapters on “Markovian Stochastic Music”;
these chapters detail Xenakis’s application of first order Markov chains for the selection of screens
and for the generation of intensity and density values in Analogique A and Analogique B (1958-1959).
These techniques were not implemented on a computer and pre-date Xenakis’s Stochastic Music
Program (Xenakis 1965).

Later computer-based Markov implementations are numerous and widespread. Implementations are
found in Sever Tipei’s MP1 (1975), David Zicarelli’s Jam Factory and Joel Chadabe and Zicarelli’s M
(Zicarelli 1987, Chadabe 1997), the Max system, Clarence Barlow’s MIDIDESK (1996 Roads 1996,
p. 849), Larry Polansky and David Rosenboom’s HMSL (1985) and JMSL (Didkovsky 2004),
Heinrich Taube’s Common Music (Taube 1989), Eduardo Reck Miranda’s CAMUS 3D (McAlpine
et al. 1999), Paul Berg’s AC Toolbox (2003), Tim Thompson’s KeyKit (Phillips 2005), and François
Pachet’s Continuator (2002). Additional studies and examples of Markov models are provided by W.
Ross Ashby (1956), J. E. Youngblood (1958), J. E. Cohen (1962), Pierre Barbaud (1968), James
Anderson Moorer (1972), Kevin Jones (1981), Ames (1989), E. Cambouropoulos (1994), D. Lyon
(1995), Curtis Roads (1996, p. 878), Jon McCormack (1996), and Miranda (2000, pp. 69-72). More

4

recently, J. L. Triviño-Rodriguez and R. Morales-Bueno review applications of Probabilistic Suffix
Automata (PSA) and related work of Assayag et al. (1999), and propose a Multiattribute Prediction
Suffix Graph (MPSG) as an improvement over both Markov chains and PSA (2001), Diemo
Schwarz, after a method of score following demonstrated by Orio and Déchelle (2001), employs
HMMs to solve music alignment problems in concatenative synthesis (2004), David Michael Cottle
demonstrates Markov models in SuperCollider 3 (2005), Miranda and Adolfo Maia Junior,
introducing the Fuzzkov system, employ Markov chains with dynamic transition matrices to control
grain selection (2005), and René Wooller and Andrew R. Brown discuss a technique of Markov
morphing (2005). While not comprehensive, these listings demonstrate the abundance and diversity
of Markov models.

4. Contemporary Markov Implementations

The Markov chain is one of the earliest techniques of CAAC (Hiller and Isaacson 1959, pp. 141-
148). A few of the many contemporary Markov implementations found in CAAC systems will be
examined in detail. In systems that provide modular Markov generators, input notations often
directly enumerate coordinate pairs of the transition matrix as a list of two or three elements. The
new string notation presented above, as well as the extended use of regular expressions, provides
greater compactness and readability than these alternative notations.

Released as part of the Max library as early as 1995, the Max “prob” object provides a first order
Markov generator that supports dynamic transition weights and proportional integer weight values
(Dobrian 1995, pp. 318-319). Symbol and transition weight values are supplied as three-element lists
with values specified in the following order: source, destination, weight. Only a single weight, to a
single destination, may be defined in each list. The Max “anal” object provides a corresponding tool
for first order Markov analysis, returning data lists in the appropriate format. An example,
distributed with Max 4.5 (“prob.help”), demonstrates a “prob” object receiving five Markov
transition weight definitions from Max message boxes. These messages, here delimited with
brackets, are as follows: [1 2 1], [2 1 1], [1 1 0], [2 2 0], [1 3 1].

Offering greater clarity, a single Markov transition string can encode these five messages:
a{1}b{2}c{3}a:{b=1|c=1}b:{a=1}

Common Music (Taube 1989) offers Markov functionality with nth order Markov generation, static
orders, dynamic transition weights, and unit-interval weight values. The customizable “markov”
class exposes Markov functionality to the user. Common Music (CM) provides a “markov-analyze”
function to generate lists of transition weights (or to configure and return a “markov” object) from a
user-supplied list of data. When directly specified, transition weight definitions are provided as a
space-separated Lisp list in the following form: (source -> (destination weight)), where
destinations with equal weights may omit weight specification. In the case of higher-order rules,
longer source transition patterns may be specified before the “->” symbol. The following incomplete
example demonstrates the definition of numerous second order rules.

5

Example 4. Second order input in CM

(new markov

:of '((d4 c4 -> (f4 .5) (g4 .5))

(d4 bf4 -> bf4)

(c4 d4 -> c4)

(c4 c4 -> (d4 .667) (c5 0.333))))

The above example can be encoded as a Markov transition string:
m{c4}n{d4}o{f4}p{g4}q{bf4}r{c5}n:m{o=1|p=1}n:q{q=1}m:n{m=1}m:m{n=2|r=1}

In CM, weight values may be supplied by dynamic pattern objects, permitting the production of
Markov generators with dynamic weights. A significant feature of CM’s transition specifications is
support for the “*” wild-card identifier, matching any possible symbol at the designated position. A
transition rule can thus be specified in the following form: (* d4 -> c4). This feature inspired the
more flexible single-operator regular expression matching presented in this study.

The AC Toolbox (Berg 2003) offers Markov functionality with nth order Markov generation, static
orders, static transition weights, and unit-interval weight values. Markov-based software objects are
partitioned between a “transition” Generator and numerous system Tools for creating the necessary
transition value table. The “transition” Generator, given this table of Markov transition probability
values, allows the generation of new values according to these probabilities. There are three Tools
for generating transition value tables: “Derive-Transition-Table” produces a table for a user-supplied
order based on analysis of a wide variety of data objects within the AC Toolbox (such as a list,
stockpile, note structure, or section); “Make-Unconditional-Table” converts a user-supplied
representation of symbol weights for zeroth order transition tables; and “Make-Conditional-Table”
converts a user-supplied representation of symbol weights for first and higher order transition
tables. The input notation for zeroth order transitions (unconditional tables) is a Lisp list of value,
weight pairs. For example:

Example 5. Zeroth order input in the AC Toolbox

(make-unconditional-table 'a .4 'b .4 'c .2)

The input notation for first and higher order transitions (conditional tables) is a Lisp list of list pairs,
where each pair is a source symbol sequence and a destination weight list. This weight list follows
the same format as the zero order transition above. For example:

Example 6. First order input in the AC Toolbox

(make-conditional-table '(a) '(b .3 c .7) '(b) '(c 1) '(c) '(a .5 b .5))

Demonstrating the ability to combine multiple orders in a single notation, a Markov transition string
can be used to encode both examples from above:
a{a}b{b}c{c}:{a=4|b=4|c=2}a:{b=3|c=7}b:{c=1}c:{a=1|b=1}

6

The Markov transition string offers three advantages over these alternative representations. First, the
syntax is clean and compact. Second, unique symbols are defined for referenced data. By doing so,
all symbols are defined separately from weight specifications, permitting symbols to refer to complex
data or long strings without obfuscating the presentation of weight assignments. Further, with all
symbols explicitly defined, incomplete sets of transition weights are permitted. Third, none of the
models above permit defining multiple-order weights simultaneously; with such a facility, multiple
orders may be deployed from the same transition specification.

5. The Markov Transition String in athenaCL

The core athenaCL Markov implementation, as well as a complete Markov transition string parser
and analysis-based string generator, is modeled as the Transition object and is defined in the Python
module markov.py. This module is distributed as part of the cross platform and open source (GPL)
athenaCL libATH library. Complete implementation details and object design analysis are beyond
the scope of this study.

In athenaCL, ParameterObjects, as models of one-dimensional generators, offer high-level object
interfaces to CAAC tools and procedures (Ariza 2005, pp. 205-207). Musical parts within athenaCL
are deployed as specialized TextureModules, or multi-dimensional generators (Ariza 2005, p. 227);
each Texture is configured with the assignment of numerous ParameterObjects. ParameterObjects
can be supplied as arguments to other ParameterObjects, permitting complex, embedded dynamic
generators.

Two ParameterObjects are provided for generating general numeric or symbolic parameter values:
MarkovValue and MarkovGeneratorAnalysis. MarkovValue takes three arguments: (1) name, (2)
transitionString, (3) parameterObject {order value}. The name of a ParameterObject must be
provided as a first argument. A Markov transition string, of any complexity and order, is provided as
a second argument. The third argument is an embedded ParameterObject to supply the order of
Markov generation. As this ParameterObject may by dynamic, various alterations to Markov
generation are possible. Floating-point order values are accepted, and are treated as probabilistic
weightings toward surrounding integers. Thus a generated order value of 1.5 will be interpreted as an
equal probabilistic weighting between 1 or 2. For each Markov value generated, these weights are
evaluated and an integer order value is determined.

The MarkovGeneratorAnalysis ParameterObject takes five arguments: (1) name, (2)
parameterObject {source Generator}, (3) valueCount, (4) maxAnalysisOrder, (5) parameterObject
{output order value}. Rather than taking a Markov string as an argument, an embedded
ParameterObject is used to produce as many values as specified by the valueCount argument, and
these values are analyzed at every order up to and including the order specified by the
maxAnalysisOrder argument. With this analysis data, the generator produces new values, embedding
another ParameterObject to control the Markov order.

The athenaCL system features specialized ParameterObjects for rhythm generation. These
generators employ Pulses, objects that specify a duration (as a ratio of an externally supplied tempo)
and an accent (as an amplitude scalar between 0 and 1, or between a rest and a fully sounding event).
The input notation for a Pulse is a Python list of three elements: a divisor, a multiplier, and an accent

7

http:markov.py

(Ariza 2005, p. 163). Two Rhythm ParameterObjects with Markov functionality, analogous to those
for general parameter values, are offered: MarkovPulse and MarkovRhythmAnalysis.

MarkovPulse takes three arguments: (1) name, (2) transitionString, (3) parameterObject {order
value}. The only difference between MarkovPulse and MarkovValue is that the transition string in
MarkovPulse must define symbols that refer to Pulse objects. MarkovRhythmAnalysis takes five
arguments (1) name, (2) parameterObject {source Rhythm Generator}, (3) pulseCount, (4)
maxAnalysisOrder, (5) parameterObject {output order value}. Similarly, the only difference between
MarkovRhythmAnalysis and MarkovGeneratorAnalysis is that the analyzed ParameterObject must
be a Rhythm ParameterObject.

6. Examples of Markov Generators with Dynamic Order Specifications

As cited above, musical applications and demonstrations of Markov generators are abundant in the
literature. The use of dynamic and probabilistic order values, however, is uncommon, if not
completely without precedent. This is in part because traditional transition matrices specify only a
single order. With the Markov transition string presented here, multiple orders can be
accommodated in the same representation.

For example, a sequence formed of six values spanning the unit interval may be constructed. The
sequence used here is designed to present repeated oscillation followed by a narrowing of the
minimum and maximum values. This sequence could be further scaled and then used for controlling
amplitude, panning, or signal processing parameters. The athenaCL AUma command is used to
analyze this sequence and produce a Markov transition string for orders two and lower:

Example 7. Creating a Markov transition string in athenaCL with AUma

:: auma 2 0 .2 .4 .6 .8 1 .8 .6 .4 .2 0 .2 .4 .6 .8 1 .8 .6 .4 .2 0 .2 .4 .6 .8 .6 .4

.2 .4 .6 .4 .6

AthenaUtility Markov Analysis

a{0}b{.2}c{.4}d{.6}e{.8}f{1}:{a=3|b=6|c=8|d=8|e=5|f=2}a:{b=3}b:{a=2|c=4}c:{b=3|d=5}d:{

a=1|c=4|e=3}e:{d=3|f=2}f:{e=2}a:b:{c=3}b:a:{b=2}b:c:{d=4}c:b:{a=2|c=1}c:d:{a=1|c=1|e=3

}d:a:{b=1}d:c:{b=3|d=1}d:e:{d=1|f=2}e:d:{c=3}e:f:{e=2}f:e:{d=2}

Using the MarkovValue ParameterObject, this Markov transition string, and a constant order value
of two, new values are generated and are graphed in the example below. This event-domain graph,
where the x axis refers to event steps and the y axis refers to generated values, is produced with the
athenaCL TPmap (TextureParameter Map) command. Note that upward and downward oscillation
is retained, with a slightly higher frequency of oscillation between values in the middle of the range.

8

Example 8. MarkovValue generation at order 2

In the next example, the same transition string is used, while the order is set to a constant value of
one. Note that oscillation gets “stuck” within value pairs, demonstrating that only one previous
value is taken into the context of generating new values.

Example 9. MarkovValue generation at order 1

In the example below, the same transition string is used while the order is set to a constant value of
zero. No longer is oscillation clearly visible: instead, a distribution of values proportional to their
analyzed frequency is created.

Example 10. MarkovValue generation at order 0

In the next example, the order parameter is linearly increased from 0 to 2 over the span of 120
events. As a clear movement between different behaviors is apparent, this example demonstrates,
even within the small range of 120 events, the utility of employing dynamic order values.

9

Example 11. MarkovValue generation with a dynamic order

markovValue,

a{0}b{.2}c{.4}d{.6}e{.8}f{1}:{a=3|b=6|c=8|d=8|e=5|f=2}a:{b=3}b:{a=2|c=4}c:{b=3|d=5}d:{

a=1|c=4|e=3}e:{d=3|f=2}f:{e=2}a:b:{c=3}b:a:{b=2}b:c:{d=4}c:b:{a=2|c=1}c:d:{a=1|c=1|e=3

}d:a:{b=1}d:c:{b=3|d=1}d:e:{d=1|f=2}e:d:{c=3}e:f:{e=2}f:e:{d=2}, (breakPointLinear,

event, single, ((0,0),(119,2)))

A final example uses the MarkovGeneratorAnalysis ParameterObject to demonstrate the use of
dynamic order values with a Markov transition string generated by analysis of an embedded
ParameterObject. In this example second order and lower Markov analysis is performed on thirty
values from a sine wave with a period of thirty events. The resulting transition data is used to
generate new values, with the output Markov generator order determined by an embedded
MarkovValue ParameterObject. This ParameterObject, using a zero order Markov chain, produces
order values weighted toward second order, with less frequent first and zero order values. The
values produced favor continuous segments of a re-generated sine wave, with interruptions of first
and zero order re-generated fragments.

Example 12. MarkovGeneratorAnalysis generation with a MarkovValue-controlled dynamic
order

markovGeneratorAnalysis, (waveSine, event, 30, 0, (constant, 0), (constant, 1)), 30,

2, (markovValue, a{0}b{1}c{2}:{a=3|b=7|c=12}, (constant, 0))

7. Conclusion

Markov chains offer a flexible CAAC tool for the probabilistic generation of parameter values. As a
tool with a long history, opportunities for innovation are limited. As this study demonstrates, the
development of more flexible parametric interfaces through powerful notations offers an avenue of
exploration.

10

8. Acknowledgments

Thanks to Paul Berg, Elizabeth Hoffman, and Paula Matthusen for offering comments on early
versions of this paper.

References

Ames, C. 1989. “The Markov Process as a Compositional Model: A Survey and Tutorial.” Leonardo
22(2): 175-187.

Ariza, C. 2005. An Open Design for Computer-Aided Algorithmic Music Composition: athenaCL. Ph.D.
Dissertation, New York University.

Ashby, R. 1956. An Introduction to Cybernetics. London: Chapman & Hall Ltd.

Assayag, G. and S. Dubnov, O. Delerue. 1999. “Guessing the Composer’s Mind: Applying Universal
Prediction to Musical Style.” In Proceedings of the International Computer Music Conference. San
Francisco: International Computer Music Association. 496-499.

Barbaud, P. 1968. La musique discipline scientifique. Paris: Dunod.

Berg, P. 2003. Using the AC Toolbox. Den Haag: Institute of Sonology, Royal Conservatory.

Bremaud, P. 1999. Markov Chains. London: Springer.

Brooks, F. P. and A. Hopkins, P. Neumann, W. V. Wright. 1957. “An Experiment in Musical
Composition.” IRE Transcripts on Electronic Computers 6: 175-182.

Buxton, W. 1975. Manual for the POD Programs. Utrecht: Institute of Sonology, University of Utrecht.

Cambouropoulos, E. 1994. “Markov Chains As an Aid to Computer Assisted Composition.” Musical
Praxis 1(1): 41-52.

Chadabe, J. 1997. Electric Sound: The Past and Promise of Electronic Music. New Jersey: Prentice-Hall.

Cohen, J. E. 1962. “Information Theory and Music.” Behavioral Science 7(2): 137-163.

Cottle, D. M. 2005. “Computer Music with examples in SuperCollider 3.”

Didkovsky, N. 2004. “Java Music Specification Language, v103 update.” In Proceedings of the
International Computer Music Conference. San Francisco: International Computer Music Association.
742-745.

Dobrian, C. 1995. MAX Reference. Mountain View: Opcode Systems.

Dodge, C. and T. A. Jerse. 1997. Computer Music: Synthesis, Composition, and Performance. New York:
Shirmer Books.

11

Hiller, L. 1969. “Some Compositional Techniques Involving the Use of Computers.” In Music by
Computers. H. von Foerster and J. W. Beauchamp, eds. New York: John Wiley & Sons, Inc. 71-
83.

Hiller, L. 1970. “Music Composed with Computers: An Historical Survey.” In The Computer and
Music. H. B. Lincoln, ed. Ithaca: Cornell University Press. 42-96.

Hiller, L. and R. Baker. 1964. “Computer Cantata: A Study in Compositional Method.” Perspectives of
New Music 3(1): 62-90.

Hiller, L. and L. Isaacson. 1959. Experimental Music. New York: McGraw-Hill.

Jones, K. 1981. “Compositional Applications of Stochastic Processes.” Computer Music Journal 5(2):
45-61.

Koenig, G. M. 1970. “Project Two - A Programme for Musical Composition.” In Electronic Music
Report. Utrecht: Institute of Sonology. 3.

Lyon, D. 1995. “Using Stochastic Petri Nets for Real-Time Nth-Order Stochastic Composition.”
Computer Music Journal 19(4): 13-22.

McAlpine, K. and E. Miranda, S. Hoggar. 1999. “Making Music with Algorithms: A Case-Study.”
Computer Music Journal 23(2): 19-30.

McCormack, J. 1996. “Grammar Based Music Composition.” In Complex Systems 96: From Local
Interactions to Global Phenomena. R. Stocker, ed. Amsterdam: ISO Press.

Miranda, E. R. 2000. Composing Music With Computers. Burlington: Focal Press.

Miranda, E. R. and A. M. Junior. 2005. “Granular Synthesis of Sounds Through Markov Chains with
Fuzzy Control.” In Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association. 193-196.

Moorer, J. 1972. “Music and Computer Composition.” Communications of the ACM 15(2): 104-113.

Norris, J. R. 1998. Markov Chains. Cambridge: Cambridge University Press.

Olson, H. F. and H. Belar. 1961. “Aid to Music Composition Employing a Random Probability
System.” Journal of the Acoustical Society of America 33(9): 1163-1170.

Orio, N. and F. Déchelle. 2001. “Score Following Using Spectral Analysis and Hidden Markov
Models.” In Proceedings of the International Computer Music Conference. San Francisco: International
Computer Music Association. 125-129.

Pachet, F. 2002. “The Continuator: Musical Interaction with Style.” In Proceedings of the International
Computer Music Conference. San Francisco: International Computer Music Association. 211-218.

Phillips, D. 2005. “At the Sounding Edge: Introducing KeyKit.” LINUX Journal. Internet:
http://www.linuxjournal.com/article/8153

12

http://www.linuxjournal.com/article/8153

Pinkerton, R. C. 1956. “Information Theory and Melody.” Scientific American 194(2): 77-86.

Polansky, L. and D. Rosenboom. 1985. “HMSL.” In Proceedings of the International Computer Music
Conference. San Francisco: International Computer Music Association. 243-250.

Quastler, H. 1955. “Discussion, following Mathematical theory of word formation, by W. Fucks.” In
Information Theory: Third London Symposium. E. C. Cherry, ed. New York: Academic Press. 168.

Roads, C. 1984. “An Overview of Music Representations.” In Musical Grammars and Computer
Analysis. Firenze: Leo S. Olschki. 7-37.

Roads, C. 1996. The Computer Music Tutorial. Cambridge: MIT Press.

Schwarz, D. 2004. Data-Driven Concatenative Sound Synthesis. Ph.D. Thesis, Ircam, University of Paris 6.

Shannon, C. E. 1948. “A Mathematical Theory of Communication.” Bell Systems Technical Journal 27:
379-423, 623-656.

Shannon, C. E. and W. Weaver. 1949. A Mathematical Theory of Communication. Urbana: University of
Illinois Press.

Sowa, J. F. 1957. “A machine to compose music.” In Geniac Manual. New York: Oliver Garfield
Company.

Sowa, J. F. 2005. Personal correspondence. 25 July 2005.

Taube, H. 1989. “Common Music: A Compositional Language in Common Lisp and CLOS.” In
Proceedings of the International Computer Music Conference. San Francisco: International Computer
Music Association. 316-319.

Tipei, S. 1975. “MP1 — a Computer Program for Music Composition.” In Proceedings of the Second
Annual Music Computation Conference. J. Beauchamp and J. Melby, eds. Urbana, Illinois: Office of
Continuing Education and Public Service in Music. 68-82.

Trivino-Rodriguez, J. L. and R. Morales-Bueno. 2001. “Using Multiattribute Prediction Suffix
Graphs to Predict and Generate Music.” Computer Music Journal 25(3): 62-79.

Wiener, N. 1948. Cybernetics. Cambridge: MIT Press.

Wooller, R. and A. R. Brown. 2005. “Investigating morphing algorithms for generative music.” Third
Iteration: Third International Conference on Generative Systems in the Electronic Arts.

Xenakis, I. 1963. Musiques Formelles. Paris: Editions Richard-Masse.

Xenakis, I. 1965. “Free Stochastic Music from the Computer. Programme of Stochastic music in
Fortran.” Gravesaner Blätter 26.

Youngblood, J. E. 1958. “Style as Information.” Journal of Music Theory 2(24).

Zicarelli, D. 1987. “M and Jam Factory.” Computer Music Journal 11(4): 13-29.

13

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Algorithmic and Generative Music
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

