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Abstract: While Markov chain generators have been employed throughout the history of 
computer music as a tool for the creation of musical parameter values, input notations for 
Markov transition values are often cumbersome and opaque. Rejecting the transition matrix 
as an input notation, this paper offers a new language-independent, string-based input 
notation for incomplete, multiple-order, static Markov transition values. Transition values 
are given greater generality by accommodating multiple orders simultaneously, as well as the 
specification of transitions with the use of limited single-operator regular expressions. A 
complete Python implementation of this model is introduced, and high-level utilities and 
object interfaces are demonstrated in athenaCL. 

1. Introduction 

Throughout the history of computer music Markov chain generators have been employed as a tool 
for the creation of musical parameter values. There are two common approaches to configuring 
these Markov processors. In the first case, a data sequence is analyzed, and then the resulting 
transition data is stored in a transition matrix and used to generate new values. In the second case, 
transition values are directly specified without derivation from analysis. In both cases, an intuitive 
and transparent notation of transition values, beyond the common tabular matrix, is advantageous. 
In the second case, a practical notation for Markov transition values offers a powerful and efficient 
input notation for a wide range of Markov applications. 

Rejecting the transition matrix as an input notation, this paper offers a language-independent, string-
based input notation for incomplete, multiple-order, static Markov transition values. Transition 
values are given greater generality by accommodating multiple orders simultaneously, as well as the 
specification of transitions with the use of limited single-operator regular expressions. A complete 
Python implementation of this model is introduced, and high-level utilities and object interfaces are 
demonstrated in athenaCL (Ariza 2005). These specialized object interfaces offer flexible rhythm 
and parameter value generation. Additionally, the use of dynamic Markov order values is shown to 
offer a flexible and previously unexplored resource. 

As Charles Ames states, “by no means can Markov chains be said to occupy the cutting edge of 
progress in automated composition…” (1989, p. 186). A Markov-based generator, further, has well-
known limitations: it is “incapable of generating self-embedded structures” (Cohen 1962, p. 155) 
and, in general, “… is not complete enough by itself to consistently produce high quality music” 
(Moorer 1972, p. 111). Nonetheless, Markov chains offer a practical tool: they can be used to 
generate any type of value or value collection, they are discrete, they offer greater control than 
uniform randomness, and, at higher orders, they produce sequentially related structures. This 
practicality, however, is often encumbered by the parametric complexity of the traditional transition 
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matrix. A challenge of computer-aided algorithmic composition (CAAC) system design is the 
reduction of parametric complexity. This challenge can be met in part by the development of 
intuitive, flexible, and language-independent string notations. Such notations permit the user to 
supply complex specifications within a single argument, rather than supplying numerous arguments 
to a function or text-entry form. 

2. The Markov Chain and the Markov Transition String 

A Markov chain, as used here, is a technique for generating a one-dimensional series of values or 
symbols based on probabilities, where probabilities for each possible outcome are selected based on 
zero or more past symbol formations. The number of past symbols a Markov chain uses to specify a 
new symbol is the “order” of the Markov chain. In the case of orders greater than zero, it is useful 
to label these past values as a “source,” and the probabilities as directing to possible “destinations” 
(Ames 1989, p. 175). Source formations are referred to as “transitions.” 

The history of Markov models is well documented in the mathematical and scientific literature 
(Norris 1998, Bermaud 1999). Their origins are traced to their namesake, Russian mathematician A. 
A. Markov (1856-1922). While some recent research has explored the Hidden Markov Model 
(HMM) and the Markov Chain Monte Carlo, this article focuses only on the conventional Markov 
“chain”: a discrete-time stochastic process. Only Markov chains with finite state spaces (or a finite 
collection of possible symbols) are considered. While Markov chains are frequently displayed with 
various state diagrams or as directed graphs, are often presented in the context of random walks, and 
are frequently defined as regular (type 3) finite state grammars (Roads 1984, p. 14), this discussion 
will only consider elementary models. 

A Markov chain will be defined with a new string notation. This notation encodes key and value 
pairs with brace-delimited values. For example, a key “x,” assigned a value of 0.3, is notated as 
x{0.3}. Multiple key and value pairs can be defined in sequence without the use of spaces or 
commas: x{0.3}y{0.7}. 

A Markov chain produces output based on examination of zero or more past symbols. A zeroth 
order Markov chain thus examines zero previous values; a third order Markov chain examines three 
previous values. A “transition” defines a possible past symbol formation. Thus, a second order 
Markov chain with two symbols (x, y) must define four transitions, or the possible past symbol 
formations x:x, x:y, y:x, y:y (where “:” separates past symbols, and symbols read from left to 
right as most remote to most recent). For each transition, probabilities may be assigned for the 
generation of a new symbol. These probabilities may be specified as weights or as unit-interval 
proportions. In the notation presented here, weights are defined by providing a destination symbol, 
an “=” sign, and a numeric value; multiple weights, separated by the “|” symbol, may be specified. 
Continuing the example above, the y:x transition may define an equal probability of producing 
either symbol “x” or “y” with the following notation: x:y{x=1|y=1}. Alternatively, the x:x transition 
could define the production of a “y” symbol nine out of ten times: x:x{x=1|y=9}. If a weight for a 
symbol is not specified within a transition, the weight is assumed to be zero. 

The zero order Markov chain has one transition, that of zero previous values. The “:” character 
alone signifies the single transition of a zero order Markov chain. For example, a zero order 
transition specification for the symbols above may be defined as :{x=3|y=4}. 
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A complete Markov transition string consists of two combined parts: symbol definitions and 
transition weight definitions. Symbols are named with lower-case letters, and weight definitions 
cannot refer to undefined symbols. Transition weight definitions may be provided for any number 
of orders. For example, all weights defined in the previous examples may be combined with symbol 
definitions to demonstrate a complete Markov transition string: 

Example 1. A complete Markov transition string 

x{0.3}y{0.7}:{x=3|y=4}x:y{x=1|y=1}x:x{x=1|y=9}


With numerous symbols and with orders greater than zero, the number of possible transitions 
becomes large. To facilitate more compact transition string definitions, two features are 
incorporated. First, all transitions not specified are assigned an equal-weight distribution for all 
defined symbols. Second, transition weight definition keys may employ limited single-operator 
regular expressions. Three operators are permitted: “*”, “-”, and “|”. The “*” operator matches any 
defined symbol: using the symbols (x, y) defined above, the transition x:* will match x:x and x:y. 
The “-” operator matches any symbol other than that specified: the transition x:-x will match x:y. 
The “|” operator matches any number of symbols specified: the transition x:x|y will match x:x and 
x:y. 

The athenaCL system offers utility commands to both encode Markov strings (AUma) and use them 
as generators (AUmg). The AUma command (AthenaUtility Markov Analysis), given a maximum 
order and a sequence of symbols, returns the corresponding Markov string for all orders less than 
and equal to the order specified. For example, the following athenaCL session encodes a simple 
sequence of two symbols at orders zero, one, and two. Note that symbols (a and b) are automatically 
assigned and that the symbol sequence, under analysis, is automatically wrapped. 

Example 2. Creating a Markov transition string in athenaCL with AUma 

:: auma 2 x x x x x x y y y y y y

AthenaUtility Markov Analysis

a{x}b{y}:{a=6|b=6}a:{a=5|b=1}b:{a=1|b=5}a:a:{a=4|b=1}a:b:{b=1}b:a:{a=1}b:b:{a=1|b=4}


The AUmg command (AthenaUtility Markov Generator) may be used to test the generation of 
values from a Markov transition string with a static order. In the example below, a Markov transition 
string, employing limited single-operator regular expressions to define a compact second order 
Markov generator, is used to produce thirty values. 

Example 3. Testing a Markov transition string in athenaCL with AUmg 

:: aumg 30 2 x{a}y{b}z{c}z:-z{z=1}y:y|z{z=1|x=2}*:x{y=2|z=1}

AthenaUtility Markov Generator

b,a,c,a,b,a,b,a,b,b,a,c,b,c,a,b,b,a,c,c,a,c,a,b,b,a,b,c,a,b
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3. The Markov Chain in the History of Algorithmic Composition 

The Markov chain is one of the earliest techniques of CAAC. In the production of Experiment IV 
of the Illiac Suite (1956), Lejaren Hiller and Leonard Isaacson used zero, first, and higher order 
Markov chains (1959, pp. 141-148). Markov chains, with probabilities determined by analysis of 
excerpts from Charles Ives’s Three Places in New England, were employed by Hiller and Robert Baker 
in the Computer Cantata (1963; Hiller and Baker 1964, p. 68; Hiller 1970, p. 54) and implemented as 
the ORD.n subroutine in MUSICOMP (Hiller 1969, pp. 72-73). An early and extensive exploration 
of computer-based Markov analysis and generation is provided by Brooks et al. (1957). Additionally, 
Gottfried Michael Koenig offers the related “ratio” selection method in Project Two (PR2, 1966); 
while not labeled as a Markov model, this generator is equivalent to a zero order Markov chain 
(1970). A similar utility is found in Barry Truax’s POD Programs with the ratio selection mode 
(Buxton 1975, p. 224). 

Prior to computer implementation, however, there was significant interest in generating one-
dimensional sequences with Markov chains. Claude E. Shannon and Warren Weaver’s 1949 text A 
Mathematical Theory of Communication, based on an earlier text by Shannon (1948) and influenced by 
the work of Norbert Wiener and his Cybernetics (1948), demonstrates the application of Markov 
chains for the algorithmic generation of English sentences. Shannon and Weaver, calling these 
generators stochastic processes, frequently suggest application to musical structures: “a system 
which produces a sequence of symbols (which may, of course, be letters or musical notes, say, rather 
than words) according to certain probabilities is called a stochastic process …” (1949, p. 11). 

Following Shannon and Weaver, numerous studies employed Markov chains as musical generators. 
These studies were done with manual, mechanical, and primitive computer calculations, and include 
the analysis and generation of Western cowboy songs by Fred and Carolyn Attneave (Cohen 1962, 
p. 143; Quastler 1955), the “Banal Tune-Maker” of Richard C. Pinkerton (1956), and the Markov 
generator created in 1956 by John F. Sowa with a Geniac “Electronic Brain Kit” (Sowa 1957, 2005; 
Cohen 1962, p. 143). Harry Olson and Herbert Belar, in 1961, built a sophisticated electronic 
machine that, based on Markovian pitch and rhythm analysis of eleven Stephen Collins Foster 
songs, produced and synthesized new melodies (1961). The analysis data of these Foster songs has 
been frequently reproduced (Dodge and Jerse 1997, pp. 364-367). Additionally, the first edition of 
Iannis Xenakis’s Musiques Formelles (1963) contained chapters on “Markovian Stochastic Music”; 
these chapters detail Xenakis’s application of first order Markov chains for the selection of screens 
and for the generation of intensity and density values in Analogique A and Analogique B (1958-1959). 
These techniques were not implemented on a computer and pre-date Xenakis’s Stochastic Music 
Program (Xenakis 1965). 

Later computer-based Markov implementations are numerous and widespread. Implementations are 
found in Sever Tipei’s MP1 (1975), David Zicarelli’s Jam Factory and Joel Chadabe and Zicarelli’s M 
(Zicarelli 1987, Chadabe 1997), the Max system, Clarence Barlow’s MIDIDESK (1996 Roads 1996, 
p. 849), Larry Polansky and David Rosenboom’s HMSL (1985) and JMSL (Didkovsky 2004), 
Heinrich Taube’s Common Music (Taube 1989), Eduardo Reck Miranda’s CAMUS 3D (McAlpine 
et al. 1999), Paul Berg’s AC Toolbox (2003), Tim Thompson’s KeyKit (Phillips 2005), and François 
Pachet’s Continuator (2002). Additional studies and examples of Markov models are provided by W. 
Ross Ashby (1956), J. E. Youngblood (1958), J. E. Cohen (1962), Pierre Barbaud (1968), James 
Anderson Moorer (1972), Kevin Jones (1981), Ames (1989), E. Cambouropoulos (1994), D. Lyon 
(1995), Curtis Roads (1996, p. 878), Jon McCormack (1996), and Miranda (2000, pp. 69-72). More 
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recently, J. L. Triviño-Rodriguez and R. Morales-Bueno review applications of Probabilistic Suffix 
Automata (PSA) and related work of Assayag et al. (1999), and propose a Multiattribute Prediction 
Suffix Graph (MPSG) as an improvement over both Markov chains and PSA (2001), Diemo 
Schwarz, after a method of score following demonstrated by Orio and Déchelle (2001), employs 
HMMs to solve music alignment problems in concatenative synthesis (2004), David Michael Cottle 
demonstrates Markov models in SuperCollider 3 (2005), Miranda and Adolfo Maia Junior, 
introducing the Fuzzkov system, employ Markov chains with dynamic transition matrices to control 
grain selection (2005), and René Wooller and Andrew R. Brown discuss a technique of Markov 
morphing (2005). While not comprehensive, these listings demonstrate the abundance and diversity 
of Markov models. 

4. Contemporary Markov Implementations 

The Markov chain is one of the earliest techniques of CAAC (Hiller and Isaacson 1959, pp. 141-
148). A few of the many contemporary Markov implementations found in CAAC systems will be 
examined in detail. In systems that provide modular Markov generators, input notations often 
directly enumerate coordinate pairs of the transition matrix as a list of two or three elements. The 
new string notation presented above, as well as the extended use of regular expressions, provides 
greater compactness and readability than these alternative notations. 

Released as part of the Max library as early as 1995, the Max “prob” object provides a first order 
Markov generator that supports dynamic transition weights and proportional integer weight values 
(Dobrian 1995, pp. 318-319). Symbol and transition weight values are supplied as three-element lists 
with values specified in the following order: source, destination, weight. Only a single weight, to a 
single destination, may be defined in each list. The Max “anal” object provides a corresponding tool 
for first order Markov analysis, returning data lists in the appropriate format. An example, 
distributed with Max 4.5 (“prob.help”), demonstrates a “prob” object receiving five Markov 
transition weight definitions from Max message boxes. These messages, here delimited with 
brackets, are as follows: [1 2 1], [2 1 1], [1 1 0], [2 2 0], [1 3 1]. 

Offering greater clarity, a single Markov transition string can encode these five messages: 
a{1}b{2}c{3}a:{b=1|c=1}b:{a=1}


Common Music (Taube 1989) offers Markov functionality with nth order Markov generation, static 
orders, dynamic transition weights, and unit-interval weight values. The customizable “markov” 
class exposes Markov functionality to the user. Common Music (CM) provides a “markov-analyze” 
function to generate lists of transition weights (or to configure and return a “markov” object) from a 
user-supplied list of data. When directly specified, transition weight definitions are provided as a 
space-separated Lisp list in the following form: (source -> (destination weight)), where 
destinations with equal weights may omit weight specification. In the case of higher-order rules, 
longer source transition patterns may be specified before the “->” symbol. The following incomplete 
example demonstrates the definition of numerous second order rules. 
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Example 4. Second order input in CM 

(new markov

:of '((d4 c4 -> (f4 .5) (g4 .5))


(d4 bf4 -> bf4)

(c4 d4 -> c4)

(c4 c4 -> (d4 .667) (c5 0.333))))


The above example can be encoded as a Markov transition string: 
m{c4}n{d4}o{f4}p{g4}q{bf4}r{c5}n:m{o=1|p=1}n:q{q=1}m:n{m=1}m:m{n=2|r=1}


In CM, weight values may be supplied by dynamic pattern objects, permitting the production of 
Markov generators with dynamic weights. A significant feature of CM’s transition specifications is 
support for the “*” wild-card identifier, matching any possible symbol at the designated position. A 
transition rule can thus be specified in the following form: (* d4 -> c4). This feature inspired the 
more flexible single-operator regular expression matching presented in this study. 

The AC Toolbox (Berg 2003) offers Markov functionality with nth order Markov generation, static 
orders, static transition weights, and unit-interval weight values. Markov-based software objects are 
partitioned between a “transition” Generator and numerous system Tools for creating the necessary 
transition value table. The “transition” Generator, given this table of Markov transition probability 
values, allows the generation of new values according to these probabilities. There are three Tools 
for generating transition value tables: “Derive-Transition-Table” produces a table for a user-supplied 
order based on analysis of a wide variety of data objects within the AC Toolbox (such as a list, 
stockpile, note structure, or section); “Make-Unconditional-Table” converts a user-supplied 
representation of symbol weights for zeroth order transition tables; and “Make-Conditional-Table” 
converts a user-supplied representation of symbol weights for first and higher order transition 
tables. The input notation for zeroth order transitions (unconditional tables) is a Lisp list of value, 
weight pairs. For example: 

Example 5. Zeroth order input in the AC Toolbox 

(make-unconditional-table 'a .4 'b .4 'c .2)


The input notation for first and higher order transitions (conditional tables) is a Lisp list of list pairs, 
where each pair is a source symbol sequence and a destination weight list. This weight list follows 
the same format as the zero order transition above. For example: 

Example 6. First order input in the AC Toolbox 

(make-conditional-table '(a) '(b .3 c .7) '(b) '(c 1) '(c) '(a .5 b .5))


Demonstrating the ability to combine multiple orders in a single notation, a Markov transition string 
can be used to encode both examples from above: 
a{a}b{b}c{c}:{a=4|b=4|c=2}a:{b=3|c=7}b:{c=1}c:{a=1|b=1}
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The Markov transition string offers three advantages over these alternative representations. First, the 
syntax is clean and compact. Second, unique symbols are defined for referenced data. By doing so, 
all symbols are defined separately from weight specifications, permitting symbols to refer to complex 
data or long strings without obfuscating the presentation of weight assignments. Further, with all 
symbols explicitly defined, incomplete sets of transition weights are permitted. Third, none of the 
models above permit defining multiple-order weights simultaneously; with such a facility, multiple 
orders may be deployed from the same transition specification. 

5. The Markov Transition String in athenaCL 

The core athenaCL Markov implementation, as well as a complete Markov transition string parser 
and analysis-based string generator, is modeled as the Transition object and is defined in the Python 
module markov.py. This module is distributed as part of the cross platform and open source (GPL) 
athenaCL libATH library. Complete implementation details and object design analysis are beyond 
the scope of this study. 

In athenaCL, ParameterObjects, as models of one-dimensional generators, offer high-level object 
interfaces to CAAC tools and procedures (Ariza 2005, pp. 205-207). Musical parts within athenaCL 
are deployed as specialized TextureModules, or multi-dimensional generators (Ariza 2005, p. 227); 
each Texture is configured with the assignment of numerous ParameterObjects. ParameterObjects 
can be supplied as arguments to other ParameterObjects, permitting complex, embedded dynamic 
generators. 

Two ParameterObjects are provided for generating general numeric or symbolic parameter values: 
MarkovValue and MarkovGeneratorAnalysis. MarkovValue takes three arguments: (1) name, (2) 
transitionString, (3) parameterObject {order value}. The name of a ParameterObject must be 
provided as a first argument. A Markov transition string, of any complexity and order, is provided as 
a second argument. The third argument is an embedded ParameterObject to supply the order of 
Markov generation. As this ParameterObject may by dynamic, various alterations to Markov 
generation are possible. Floating-point order values are accepted, and are treated as probabilistic 
weightings toward surrounding integers. Thus a generated order value of 1.5 will be interpreted as an 
equal probabilistic weighting between 1 or 2. For each Markov value generated, these weights are 
evaluated and an integer order value is determined. 

The MarkovGeneratorAnalysis ParameterObject takes five arguments: (1) name, (2) 
parameterObject {source Generator}, (3) valueCount, (4) maxAnalysisOrder, (5) parameterObject 
{output order value}. Rather than taking a Markov string as an argument, an embedded 
ParameterObject is used to produce as many values as specified by the valueCount argument, and 
these values are analyzed at every order up to and including the order specified by the 
maxAnalysisOrder argument. With this analysis data, the generator produces new values, embedding 
another ParameterObject to control the Markov order. 

The athenaCL system features specialized ParameterObjects for rhythm generation. These 
generators employ Pulses, objects that specify a duration (as a ratio of an externally supplied tempo) 
and an accent (as an amplitude scalar between 0 and 1, or between a rest and a fully sounding event). 
The input notation for a Pulse is a Python list of three elements: a divisor, a multiplier, and an accent 
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(Ariza 2005, p. 163). Two Rhythm ParameterObjects with Markov functionality, analogous to those 
for general parameter values, are offered: MarkovPulse and MarkovRhythmAnalysis. 

MarkovPulse takes three arguments: (1) name, (2) transitionString, (3) parameterObject {order 
value}. The only difference between MarkovPulse and MarkovValue is that the transition string in 
MarkovPulse must define symbols that refer to Pulse objects. MarkovRhythmAnalysis takes five 
arguments (1) name, (2) parameterObject {source Rhythm Generator}, (3) pulseCount, (4) 
maxAnalysisOrder, (5) parameterObject {output order value}. Similarly, the only difference between 
MarkovRhythmAnalysis and MarkovGeneratorAnalysis is that the analyzed ParameterObject must 
be a Rhythm ParameterObject. 

6. Examples of Markov Generators with Dynamic Order Specifications 

As cited above, musical applications and demonstrations of Markov generators are abundant in the 
literature. The use of dynamic and probabilistic order values, however, is uncommon, if not 
completely without precedent. This is in part because traditional transition matrices specify only a 
single order. With the Markov transition string presented here, multiple orders can be 
accommodated in the same representation. 

For example, a sequence formed of six values spanning the unit interval may be constructed. The 
sequence used here is designed to present repeated oscillation followed by a narrowing of the 
minimum and maximum values. This sequence could be further scaled and then used for controlling 
amplitude, panning, or signal processing parameters. The athenaCL AUma command is used to 
analyze this sequence and produce a Markov transition string for orders two and lower: 

Example 7. Creating a Markov transition string in athenaCL with AUma 

:: auma 2 0 .2 .4 .6 .8 1 .8 .6 .4 .2 0 .2 .4 .6 .8 1 .8 .6 .4 .2 0 .2 .4 .6 .8 .6 .4

.2 .4 .6 .4 .6

AthenaUtility Markov Analysis

a{0}b{.2}c{.4}d{.6}e{.8}f{1}:{a=3|b=6|c=8|d=8|e=5|f=2}a:{b=3}b:{a=2|c=4}c:{b=3|d=5}d:{

a=1|c=4|e=3}e:{d=3|f=2}f:{e=2}a:b:{c=3}b:a:{b=2}b:c:{d=4}c:b:{a=2|c=1}c:d:{a=1|c=1|e=3

}d:a:{b=1}d:c:{b=3|d=1}d:e:{d=1|f=2}e:d:{c=3}e:f:{e=2}f:e:{d=2}


Using the MarkovValue ParameterObject, this Markov transition string, and a constant order value 
of two, new values are generated and are graphed in the example below. This event-domain graph, 
where the x axis refers to event steps and the y axis refers to generated values, is produced with the 
athenaCL TPmap (TextureParameter Map) command. Note that upward and downward oscillation 
is retained, with a slightly higher frequency of oscillation between values in the middle of the range. 
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Example 8. MarkovValue generation at order 2 

In the next example, the same transition string is used, while the order is set to a constant value of 
one. Note that oscillation gets “stuck” within value pairs, demonstrating that only one previous 
value is taken into the context of generating new values. 

Example 9. MarkovValue generation at order 1 

In the example below, the same transition string is used while the order is set to a constant value of 
zero. No longer is oscillation clearly visible: instead, a distribution of values proportional to their 
analyzed frequency is created. 

Example 10. MarkovValue generation at order 0 

In the next example, the order parameter is linearly increased from 0 to 2 over the span of 120 
events. As a clear movement between different behaviors is apparent, this example demonstrates, 
even within the small range of 120 events, the utility of employing dynamic order values. 
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Example 11. MarkovValue generation with a dynamic order 

markovValue,

a{0}b{.2}c{.4}d{.6}e{.8}f{1}:{a=3|b=6|c=8|d=8|e=5|f=2}a:{b=3}b:{a=2|c=4}c:{b=3|d=5}d:{

a=1|c=4|e=3}e:{d=3|f=2}f:{e=2}a:b:{c=3}b:a:{b=2}b:c:{d=4}c:b:{a=2|c=1}c:d:{a=1|c=1|e=3

}d:a:{b=1}d:c:{b=3|d=1}d:e:{d=1|f=2}e:d:{c=3}e:f:{e=2}f:e:{d=2}, (breakPointLinear,

event, single, ((0,0),(119,2)))


A final example uses the MarkovGeneratorAnalysis ParameterObject to demonstrate the use of 
dynamic order values with a Markov transition string generated by analysis of an embedded 
ParameterObject. In this example second order and lower Markov analysis is performed on thirty 
values from a sine wave with a period of thirty events. The resulting transition data is used to 
generate new values, with the output Markov generator order determined by an embedded 
MarkovValue ParameterObject. This ParameterObject, using a zero order Markov chain, produces 
order values weighted toward second order, with less frequent first and zero order values. The 
values produced favor continuous segments of a re-generated sine wave, with interruptions of first 
and zero order re-generated fragments. 

Example 12. MarkovGeneratorAnalysis generation with a MarkovValue-controlled dynamic 
order 

markovGeneratorAnalysis, (waveSine, event, 30, 0, (constant, 0), (constant, 1)), 30,

2, (markovValue, a{0}b{1}c{2}:{a=3|b=7|c=12}, (constant, 0))


7. Conclusion 

Markov chains offer a flexible CAAC tool for the probabilistic generation of parameter values. As a 
tool with a long history, opportunities for innovation are limited. As this study demonstrates, the 
development of more flexible parametric interfaces through powerful notations offers an avenue of 
exploration. 
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