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ABSTRACT 

Towards developing methods of software comparison 
and analysis, this article proposes a definition of a 
computer aided algorithmic composition (CAAC) 
system and offers seven system descriptors: scale, 
process-time, idiom-affinity, extensibility, event 
production, sound source, and user environment. The 
public internet resource algorithmic.net is introduced, 
providing a lexicon of systems and research in computer 
aided algorithmic composition. 

1. DEFINITION OF A COMPUTER-AIDED 
ALGORITHMIC COMPOSITION SYSTEM 

Labels such as algorithmic composition, automatic 
composition, composition pre-processing, computer-
aided composition (CAC), computer composing, 
computer music, procedural composition, and score 
synthesis have all been used to describe overlapping, or 
sometimes identical, projects in this field. No attempt 
will be made to distinguish these terms, though some 
have tried (Spiegel 1989; Cope 1991, p. 220; Burns 
1994, p. 195; Miranda 2000, pp. 9-10; Taube 2004; 
Gerhard and Hepting 2004, p. 505). In order to provide 
greater specificity, a hybrid label is introduced: CAAC, 
or computer aided algorithmic composition. (This term 
is used in passing by Martin Supper (2001, p. 48).) This 
label is derived from the combination of two labels, 
each too vague for continued use. The label “computer 
aided composition” lacks the specificity of using 
generative algorithms. Music produced with notation or 
sequencing software could easily be considered 
computer aided composition. The label “algorithmic 
composition” is likewise too broad, particularly in that it 
does not specify the use of a computer. Although Mary 
Simoni has suggested that “because of the increased role 
of the computer in the compositional process, 
algorithmic composition has come to mean the use of 
computers…” (2003), there remain many historical and 
contemporary compositional techniques that, while not 
employing the computer, are properly described as 
algorithmic. David Cope supports this view, stating that 
“… the term ‘computer’ is not requisite to a definition 
of algorithmic composition…” (1993, p. 24). 

Since 1955 a wide variety of CAAC systems have been 
created. Towards the aim of providing tools for software 

comparison and analysis, this article proposes seven 
system descriptors. Despite Lejaren Hiller’s well-known 
claim that “computer-assisted composition is difficult to 
define, difficult to limit, and difficult to systematize” 
(Hiller 1981, p. 75), a definition is proposed. 

A CAAC system is software that facilitates the 
generation of new music by means other than the 
manipulation of a direct music representation. Here, 
“new music” does not designate style or genre; rather, 
the output of a CAAC system must be, in some manner, 
a unique musical variant. An output, compared to the 
user’s representation or related outputs, must not be a 
“copy,” accepting that the distinction between a copy 
and a unique variant may be vague and contextually 
determined. This output may be in the form of any 
sound or sound parameter data, from a sequence of 
samples to the notation of a complete composition. A 
“direct music representation” refers to a linear, literal, or 
symbolic representation of complete musical events, 
such as an event list (a score in Western notation or a 
MIDI file) or an ordered list of amplitude values (a 
digital audio file or stream). Though all representations 
of aural entities are necessarily indirect to some degree, 
the distinction made here is not between these 
representations and aural entities. Rather, a distinction is 
made between the representation of musical entities 
provided to the user and the system output. If the 
representation provided to the user is the same as the 
output, the representation may reasonably be considered 
direct. 

A CAAC system permits the user to manipulate indirect 
musical representations: this may take the form of 
incomplete musical materials (a list of pitches or 
rhythms), an equation, non-music data, an image, or 
meta-musical descriptions. Such representations are 
indirect in that they are not in the form of complete, 
ordered musical structures. In the process of algorithmic 
generation these indirect representations are mapped or 
transformed into a direct music representation for 
output. When working with CAAC software, the 
composer arranges and edits these indirect 
representations. The software interprets these indirect 
music representations to produce musical structures. 

This definition does not provide an empirical measure 
by which a software system, removed from use, can be 
isolated as a CAAC system. Rather, a contextual 
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delineation of scope is provided, based in part on use 
case. Consideration must be given to software design, 
functionality, and classes of user interaction. 

This definition is admittedly broad, and says only what a 
CAAC system is not. This definition includes historic 
systems such as the Experiments of Hiller and Isaacson 
(1959), Iannis Xenakis’s SMP (1965), and Gottfried 
Michael Koenig’s PR1 (1970a) and PR2 (1970b). In 
these cases the user provides initial musical and non-
musical data (parameter settings, value ranges, stockpile 
collections), and these indirect representations are 
mapped into score tables. This definition likewise 
encompasses Xenakis’s GENDYN (1992) and Koenig’s 
SSP (Berg et al 1980). This definition includes any 
system that converts images (an indirect representation) 
to sound, such as Max Mathews and L. Rosler’s Graphic 
1 system (1968) or Xenakis’s UPIC (1992; Marino et al. 
1993). It does not matter how the images are made; they 
might be from a cellular automaton, a digital 
photograph, or hand-drawn. What matters is that the 
primary user-interface is an indirect representation. 
Some systems may offer the user both direct and 
indirect music representations. If one representation is 
primary, that representation may define the system; if 
both representations are equally presented to the user, a 
clear distinction may not be discernible. 

This definition excludes, in most use cases, notation 
software. Notation software is primarily used for 
manipulating and editing a direct music representation, 
namely Western notation. New music is not created by 
notation software: the output, the score, is the user-
defined representation. Recently, systems such as the 
popular notation applications Sibelius (Sibelius 
Software Limited) and Finale (MakeMusic! Inc.) have 
added user-level interfaces for music data processing in 
the form of specialized scripting languages or plug-ins. 
These tools allow the user to manipulate and generate 
music data as notation. In this case, the script and its 
parameters are an indirect music representation and can 
be said to have attributes of a CAAC system. This is 
not, however, the primary user-level interface. 

This definition excludes, in most use cases, digital audio 
workstations, sequencers, and digital mixing and 
recording environments. These tools, as with notation 
software, are designed to manipulate and output a direct 
music representation. The representation, in this case, is 
MIDI note data, digital audio files, or sequences of 
event data. Again, new music is not created. The output 
is the direct representation that has been stored, edited, 
and processed by the user. Such systems often have 
modular processors (plug-ins or effects) for both MIDI 
and digital audio data. Some of these processors allow 
the user to control music data with indirect music 
representations. For example, a MIDI processor might 
implement an arpeggiator, letting the user, for a given 
base note, determine the scale, size, and movement of 
the arpeggio. In this case the configuration of the 
arpeggio is an indirect representation, and can be said to 

have attributes of a CAAC system. This is not, however, 
the primary user-level interface. 

2. RESEARCH IN CATEGORIZING 
COMPOSITION SYSTEMS 

The number and diversity of CAAC systems, and the 
diversity of interfaces, platforms, and licenses, have 
made categorization elusive. Significant general 
overviews of computer music systems have been 
provided by Curtis Roads (1984, 1985), Loy and Curtis 
Abbott (1985), Bruce Pennycook (1985), Loy (1989), 
and Stephen Travis Pope (1993). These surveys, 
however, have not focused on generative or 
transformational systems. 

Pennycook (1985) describes five types of computer 
music interfaces: (1) composition and synthesis 
languages, (2) graphics and score editing environments, 
(3) performance instruments, (4) digital audio 
processing tools, and (5) computer-aided instruction 
systems. This division does not attempt to isolate CAAC 
systems from tools used in modifying direct 
representations, such as score editing and digital audio 
processing. Loy (1989, p. 323) considers four types of 
languages: (1) languages used for music data input, (2) 
languages for editing music, (3) languages for 
specification of compositional algorithms, and (4) 
generative languages. This division likewise 
intermingles tools for direct representations (music data 
input and editing) with tools for indirect representations 
(compositional algorithms and generative languages). 
Pope’s “behavioral taxonomy” (1993, p. 29), in focusing 
on how composers interact with software, is near to the 
goals of this study, but is likewise concerned with a 
much broader collection of systems, including “… 
software- and hardware-based systems for music 
description, processing, and composition …” (1993, p. 
26). Roads survey of “algorithmic composition systems” 
divides software systems into four categories: (1) self-
contained automated composition programs, (2) 
command languages, (3) extensions to traditional 
programming languages, (4) and graphical or textual 
environments including music programming languages 
(1996, p. 821). This division also relates to the 
perspective taken here, though neither degrees of “self-
containment” nor distinctions between music languages 
and language extensions are considered. 

Texts that have attempted to provide an overview of 
CAAC systems in particular have generally used one of 
three modes of classification: (1) chronological (Hiller 
1981; Burns 1994), (2) division by algorithm type 
(Dodge and Jerse 1997, p. 341; Miranda 2000), or (3) 
division by output format or output scale (Buxton 1978, 
p. 10; Laske 1981, p. 120). All of these methods, 
however, fail to isolate important attributes from the 
perspective of the user and developer. A chronological 
approach offers little information on similarities 
between historically disparate systems, and suggests, 



incorrectly, that designs have developed along a linear 
trajectory. Many contemporary systems support 
numerous types of algorithms, and numerous types of 
output formats. This article proposes seven possible, and 
equally valid, descriptors of CAAC systems. 

3. PRIMARY DESCRIPTORS 

3.1. The Difficulty of Distinctions 

Comparative software analysis is a difficult task, even if 
the software systems to be compared share a common 
purpose. Despite these challenges, such a comparison 
offers a useful vantage. Not only does a comparative 
framework demonstrate the diversity of systems 
available, it exposes similarities and relationships that 
might not otherwise be perceived. 

In order to describe the landscape of software systems, it 
is necessary to establish distinctions. Rather than 
focusing on chronology, algorithms, or output types, this 
article proposes seven descriptors of CAAC system 
design. These descriptors are scale, process-time, idiom-
affinity, extensibility, event production, sound source, 
and user environment. All systems can, in some fashion, 
be defined by these descriptors. For each descriptor, a 
range of specifications are given. These specifications, 
in some cases, represent a gradient. In all cases these 
specifications are non-exclusive: some systems may 
have aspects of more than one specification for a single 
descriptor. Importantly, all CAAC systems have some 
aspect of each descriptor. The use of multiple 
descriptors to describe a diverse field of systems is 
demonstrated by Pope in his “taxonomy of composer’s 
software” (1993), where eighteen different 
“dimensions” are proposed and accompanied by fifteen 
two-dimensional system graphs. Unlike the presentation 
here, however, some of Pope’s dimensions are only 
applicable to certain systems. John Biles, in his 
“tentative taxonomy” of evolutionary music systems 
(2003), likewise calls such descriptors “dimensions.” 

It is unlikely that an objective method for deriving and 
applying a complete set of software descriptors is 
possible in any application domain, let alone in one that 
integrates with the creative process of music 
composition. Consideration of use case, technological 
change, and the nature of creative production requires 
broad categories with specifications that are neither 
mutually exclusive nor quantifiable. The assignment of 
specifications, further, is an interpretation open to 
alternatives. Though this framework is broad, its 
imprecision permits greater flexibility than previous 
attempts, while at the same time clearly isolating 
essential aspects of closely related systems from the 
entire history of the field. 

3.2. Scale: Micro and Macro Structures 

The scale of a CAAC system refers to the level of 
musical structures the system produces. Two extremes 
of a gradient are defined: micro and macro. Micro 
structures are musical event sequences commonly 
referred to as sound objects, gestures, textures, or 
phrases: small musical materials that require musical 
deployment in larger structures. Micro structures scale 
from the level of samples and grains to collections of 
note events. In contrast, macro structures are musical 
event sequences that approach complete musical works. 
Macro structures often articulate a musical form, such as 
a sonata or a chorale, and may be considered complete 
compositions. The concept of micro and macro 
structures closely relates to what Eduardo Reck Miranda 
(2000) calls bottom-up and top-down organizations, 
where bottom-up composition begins with micro 
structures, and top-down composition begins with 
macro structures. 

Alternative time-scale labels for musical structures have 
been proposed. Horacio Vaggione has defined the lower 
limit of the macro-time domain as the note, while the 
micro-time domain is defined as sub-note durations on 
the order of milliseconds (2001, p. 60). Roads, in 
Microsound (2002, pp. 3-4), expands time into nine 
scales: infinite, supra, macro, meso, sound object, 
micro, sample, subsample, and infinitesimal. Macro, in 
the usage proposed here, refers to what Roads calls both 
macro and meso, while micro refers to what Roads calls 
meso, sound object, micro, and sample. Unlike the 
boundaries defined by Roads and Vaggione, the 
distinctions here are more fluid and highly dependent on 
context and musical deployment. Musical structure and 
temporal scales are, in part, a matter of interpretation. A 
composer may choose to create a piece from a single 
gesture, or to string together numerous large-scale 
forms. 

Such a coarse distinction is useful for classifying the 
spectrum of possible outputs of CAAC systems. A few 
examples demonstrate the context-dependent nature of 
this descriptor. Xenakis’s GENDYN, for instance, is a 
system specialized toward the generation of micro 
structures: direct waveform break-points at the level of 
the sample. Although Xenakis used this system to 
compose entire pieces (GENDY3 (1991), S709 (1994)), 
the design of the software is specialized for micro 
structures. Though the system is used to generate music 
over a large time-span, there is little control over large-
scale form (Hoffman 2000). Kemal Ebcioglu’s 
CHORAL system (1988), at the other extreme, is a 
system designed to create a complete musical form: the 
Bach chorale. Though the system is used to generate 
music over a relatively short time-span, concepts of 
large-scale form are encoded in the system. 



3.3. Process Model: Real-Time and Non-Real-Time 

The process model of a CAAC system refers to the 
relationship between the computation of musical 
structures and their output. A real-time (RT) system 
outputs each event after generation along a scheduled 
time line. A non-real-time (NRT) system generates all 
events first, then provides output. In the context of a RT 
CAAC system, the calculation of an event must be 
completed before its scheduled output. Some systems 
offer a single process model while others offer both. 

Whether a system is RT or NRT determines, to a certain 
extent, the types of operations that can be completed. 
RT processes are a subset of NRT processes: some 
processes that can be done in NRT cannot be done in 
RT. For example, a sequence of events cannot be 
reversed or rotated in RT (this would require knowledge 
of future events). Mikael Laurson, addressing the 
limitations of RT compositional processes, points out 
that a RT process model “can be problematic, or even 
harmful”: “composition is an activity that is typically 
‘out-of-time’” and further, “there are many musical 
problems that cannot be solved in real time … if we 
insist on real-time performance, we may have to 
simplify the musical result” (1996, p. 19). Though a 
CAAC system need not model traditional cognitive 
compositional activities (whether out-of-time or 
otherwise), a RT process model does enforce 
computational limits. 

In general, a RT system is limited to linear processes: 
only one event, or a small segment of events (a buffer, a 
window, or a frame), can be processed at once. A NRT 
system is not limited to linear processes: both linear and 
nonlinear processing is available. A nonlinear process 
might create events in a sequential order different than 
their eventual output order. For example, event start 
times might be determined by a Gaussian distribution 
within defined time boundaries: the events will not be 
created in the order of their ultimate output. A RT 
system, however, has the obvious advantage of 
immediate interaction. This interaction may be in 
response to the composer or, in the case of an interactive 
music system, in response to other musicians or physical 
environments. 

As with other distinctions, these boundaries are not 
rigid. A RT system might, instead of one event at a time, 
collect events into a frame and thus gain some of the 
functionality of NRT processing. Similarly, a NRT 
system, instead of calculating all events at once, might 
likewise calculate events in frames and then output these 
frames in RT, incurring a small delay but simulating RT 
performance. 

Leland Smith’s SCORE system (1972), for example, has 
a NRT process model: music, motives, and probabilities 
are specified in a text file for each parameter, and this 
file is processed to produce a score. James McCartney’s 
SuperCollider language (1996) has a RT process model: 
with SuperCollider3 (SC3), instrument definitions 

(SynthDefs) are instantiated as nodes on a server and 
respond to RT messages (McCartney 2002). 

3.4. Idiom-Affinity: Singular and Plural 

Idiom-affinity refers to the proximity of a system to a 
particular musical idiom, style, genre, or form. Idiom, 
an admittedly broad term, is used here to refer 
collectively to many associated terms. All CAAC 
systems, by incorporating some minimum of music-
representation constructs, have an idiom-affinity. A 
system with a singular idiom-affinity specializes in the 
production of one idiom (or a small collection of related 
idioms), providing tools designed for the production of 
music in a certain form, from a specific time or region, 
or by a specific person or group. A system with a plural 
idiom-affinity allows the production of multiple musical 
styles, genres, or forms. 

The idea of idiom-affinity is general. If a system offers 
only one procedural method of generating event lists, 
the system has a singular idiom-affinity. Idiom-affinity 
therefore relates not only to the design of low-level 
representations, but also to the flexibility of the large-
scale music generators. The claim that all CAAC 
systems have an idiom-affinity has been affirmed by 
many researchers. Barry Truax states that, regardless of 
a system designer’s claims, “all computer music systems 
explicitly and implicitly embody a model of the musical 
process that may be inferred from the program and data 
structure of the system…” (1976, p. 230). The claim that 
all systems have an idiom-affinity challenges the goal of 
“musical neutrality,” a term used by Laurson to suggest 
that “the hands of the user should not be tied to some 
predefined way of thinking about music or to a certain 
musical style” (1996, p. 18). Laurson claims, contrary to 
the view stated here, that by creating primitives that 
have broad applicability and allowing for the creation of 
new primitives, a system can maintain musical 
neutrality despite the incorporation of “powerful tools 
for representing musical phenomena” (1996, p. 18). 
Musical neutrality can be approached, but it can never 
be fully realized. 

Koenig’s PR1 (1970a), for example, is a system with a 
singular idiom-affinity: the system, designed primarily 
for personal use by Koenig, exposes few configurable 
options to the user and, in its earliest versions, offers the 
user no direct control over important musical parameters 
such as form and pitch. Paul Berg’s AC Toolbox (2003) 
has a plural idiom-affinity: low level tools and objects 
(such as data sections, masks, and stockpiles) are 
provided, but are very general, are not supplied with 
defaults, and can be deployed in a variety of 
configurations. 

3.5. Extensibility: Closed and Open 

Extensibility refers to the ability of a software system to 
be extended. This often means adding code, either in the 



form of plug-ins or other modular software components. 
In terms of object-oriented systems, this is often done by 
creating a subclass of a system-defined object, inheriting 
low-level functionality and a system-compatible 
interface. An open system allows extensibility: new 
code can be added to the system by the user. A closed 
system does not allow the user to add code to the system 
or change its internal processing in any way other than 
the parameters exposed to the user. 

In terms of CAAC systems, a relationship often exists 
between the extensibility of a system and its idiom-
affinity. Systems that have a singular idiom-affinity tend 
to be closed; systems that have a plural idiom-affinity 
tend to be open. All open-source systems, by allowing 
users to manipulate system source code, have open 
extensibility. Closed-source systems may or may not 
provide open extensibility. 

Joel Chadabe’s and David Zicarelli’s M (Zicarelli 1987; 
Chadabe 1997, p. 316), for instance, is a closed, stand-
alone application: though highly configurable, new 
code, objects, or models cannot be added to the system 
or interface. Miller Puckette’s cross-platform PureData 
(1997) is an open system: the language is open source 
and extensible through the addition of compiled 
modules programmed in C. 

3.6. Event Production: Generation and 
Transformation 

A distinction can be made between the generation of 
events from indirect music representations (such as 
algorithms or lists of musical materials) and the 
transformation of direct music representations (such as 
MIDI files) with indirect models. Within some CAAC 
systems, both processes are available, allowing the user 
to work with both the organization of generators and the 
configuration of transformers. Some systems, on the 
other hand, focus on one form over another. The 
division between generators and transformers, like other 
distinctions, is fluid and contextual. 

Andre Bartetzki’s Cmask system (1997) allows the 
generation of event parameters with a library of 
stochastic functions, generators, masks, and quantizers. 
Tools for transformation are not provided. Cope’s EMI 
system (1996) employs a transformational model, 
producing new music based on analyzed MIDI files, 
extracting and transforming compositional patterns and 
signatures. Tools are not provided to generate events 
without relying on structures extracted from direct 
representations. 

3.7. Sound Source: Internal, Exported, Imported, 
External 

All CAAC systems produce event data for sound 
production. This event data can be realized by different 
sound sources. In some cases a system contains both the 
complete definition of sound-production components 

(instrument algorithms), and is capable of internally 
producing the sound through an integrated signal 
processing engine. The user may have complete 
algorithmic control of not only event generation, but 
signal processing configuration. Such a system has an 
internal sound source. In other cases a system may 
export complete definitions of sound-production 
components (instrument algorithms) to another system. 
The user may have limited or complete control over 
signal processing configuration, but the actual 
processing is exported to an external system. For 
example, a system might export Csound instrument 
definitions or SuperCollider SynthDefs. Such a system 
has an exported sound source. In a related case a CAAC 
system may import sound source information from an 
external system, automatically performing necessary 
internal configurations. For example, loading instrument 
definitions into a synthesis system might automatically 
configure their availability and settings in a CAAC 
system. Such a system has an imported sound source. In 
the last case a system may define the sound source only 
with a label and a selection of sound-source parameters. 
The user has no control over the sound source except 
through values supplied to event parameters. Examples 
include a system that produces Western notation for 
performance by acoustic instruments, or a system that 
produces a Csound score for use with an external 
Csound orchestra. Such a system has an external sound 
source. As with other descriptors, some systems may 
allow for multiple specifications. 

Roger Dannenberg’s Nyquist (1997a, 1997b) is an 
example of a system with an internal sound source: the 
language provides a complete synthesis engine in 
addition to indirect music representations. The 
athenaCL system (Ariza 2005) is an example of a 
system that uses an exported sound source: a Csound 
orchestra file can be dynamically constructed and 
configured each time an event list is generated. Heinrich 
Taube’s Common Music (1991) supports an imported 
sound source: Common Lisp Music (CLM) instruments, 
once loaded, are automatically registered within CM 
(1997, p. 30). Clarence Barlow’s Autobusk system 
(1990) uses an external sound source: the system 
provides RT output for MIDI instruments. 

3.8. User Environment: Language, Batch, Interactive 

The user environment is the primary form in which a 
CAAC system exposes its abstractions to the user, and it 
is the framework in which the user configures these 
abstractions. A CAAC system may provide multiple 
environments, or allow users to construct their own 
environments and interfaces. The primary environment 
the system presents to the user can, however, be 
isolated. 

Loy (1989, p. 319) attempts to distinguish languages, 
programs, and (operating) systems. Contemporary 
systems, however, are not so discrete: a “program” may 
allow internal scripting or external coding through the 



program’s API; a “language” may only run within a 
platform-specific program. Particularly in the case of 
CAAC systems, where minimal access to code-level 
interfaces is common, the division between “language” 
and “program” is not useful. Such features are here 
considered aspects of user environment. Language, 
batch, and interactive environments are isolated (and not 
discrete) because they involve different types of 
computer-user interaction. Loy even considers some 
systems, such as Koenig’s PR1 and PR2, to be 
languages (1989, p. 324), even though, in the context of 
computer-user interaction, it has never been possible to 
program in the “language” of either system. 

A language interface provides the user with an artificial 
language to design and configure music abstractions. 
There are two forms of languages: text and graphic. A 
text language is composed with standard text-editors, 
and includes programming languages, markup-
languages, or formal languages and grammars. A 
graphic language (sometimes called a visual language) 
is used within a program that allows the organization of 
software components as visual entities, usually 
represented as a network of interconnected boxes upon a 
two-dimensional plane. A box may have a set of inputs 
and outputs; communication between boxes is 
configured by drawing graphic lines from inputs to 
outputs. Laurson (1996) provides a thorough 
comparison of text and graphic languages. He 
summarizes differences between the two paradigms: text 
languages offer compliance with standards, 
compactness, and speed, whereas graphic languages 
offer intuitive programming logic, intuitive syntax, 
defaults, and error checking (1996, p. 16). These 
differences are not true for all languages: some visual 
languages offer speed, while some text languages offer 
an intuitive syntax. 

A batch interface is a system that only permits the user 
to provide input data, usually in the form of a text file or 
a list of command-line options. The input data, here 
called a manifest, is processed and the program returns a 
result. As Roads points out, batch processes refer “… to 
the earliest computer systems that ran one program at a 
time; there was no interaction with the machine besides 
submitting a deck of punched paper cards for execution 
and picking up the printed output” (1996, p. 845). 
Modern batch systems, in addition to being very fast, 
offer considerably greater flexibility of input 
representation. Though an old model, batch processing 
is still useful and, for some tasks, superior to interaction. 
The manifest may resemble a text programming 
language, but often lacks the expressive flexibility of a 
complete language. A batch system does not permit an 
interactive-session: input is processed and returned in 
one operation. What is desired from the software must 
be completely specified in the manifest. Curiously, Pope 
defines a batch system as distinct from RT and “rapid 
turnaround” systems not by its particular interface or 
user environment, but by “… the delay between the 
capture or description of signal, control, or event and its 

audible effect” (1993, p. 29). More than just a 
performance constraint, modern batch environments 
define a particular form of user interaction independent 
of performance time or process model. 

An interactive interface allows the user to issue 
commands and, for each command, get a response. 
Interactive interfaces usually run in a session 
environment: the user works inside the program, 
executing discrete commands and getting discrete 
responses. Interactive interfaces often have tools to help 
the user learn the system, either in the form of help 
messages, error messages, or user syntax correction. 
Interactive interfaces often let the user browse the 
materials that they are working with and the resources 
available in the system, and may provide numerous 
different representations of these materials. Such a 
system may be built with text or graphics. Focusing on 
interactive systems over interactive interfaces, Roads 
distinguishes between (1) “… light interactions 
experienced in a studio-based ‘composing environment,’ 
where there is time to edit and backtrack…” and (2) “… 
real-time interaction experienced in working with a 
performance system onstage, where … there is no time 
for editing” (1996, p. 846). While this distinction is 
valuable for discussing context-based constraints of 
system use, many CAAC systems, with either language 
interfaces or interactive interfaces, support both types of 
system interaction as described by Roads. Here, use of 
interaction refers more to user-system interaction in 
NRT or RT production, rather than user-music 
interaction in RT production. 

An interactive text interface is a program that takes 
input from the user as text, and provides text output. 
These systems often operate within a virtual terminal 
descended from the classic DEC VT05 (1975) and 
VT100 (1978) hardware. The UNIX shell is a common 
text interface. Contemporary text interfaces interact with 
the operating system and window manager, allowing a 
broad range of functionality including the production of 
graphics. These graphics, in most cases, are static and 
cannot be used to manipulate internal representations. 
An interactive text interface system may have a graphic 
user interface (GUI). Such a system, despite running in 
a graphic environment, conducts user interaction 
primarily with text. An interactive graphics interface 
employs a GUI for the configuration and arrangement of 
user-created entities. Users can alter musical 
representations by directly designing and manipulating 
graphics. 

As with other descriptors, these specifications are not 
exclusive. A CAAC system may offer aspects of both a 
graphical and a textual programming language. The 
manifest syntax of a batch system may approach the 
flexibility of a complete text language. An interactive 
text or graphics system may offer batch processing or 
access to underlying system functionality as a language-
based Application Programming Interface (API). 
Despite these overlapping environments, it is 



nonetheless useful, when possible, to classify a system 
by its primary user-level interface. 

William Schottstaedt’s Pla system (1983) is an example 
of a text language. Laurson’s Patchwork system 
(Laurson and Duthen 1989) provides an example of a 
graphical language. Mikel Kuehn’s nGen (2001) is a 
batch user environment: the user creates a manifest, and 
this file is processed to produced Csound scores. Joel 
Chadabe’s PLAY system demonstrates an interactive 
text interface, providing the user a shell-like 
environment for controlling the system (1978). Finally, 
Laurie Spiegel’s Music Mouse system (1986) provides 
an example of an interactive graphic system. 

4. ALGORITHMIC.NET 

The definition and seven descriptors presented above 
are the result of extensive research in CAAC systems, 
much of which is beyond the scope of this article. This 
research has been made publicly available in the form of 
a website titled “algorithmic.net.” This site provides a 
bibliography of over one thousand resources in CAAC 
and a listing of over eighty contemporary and historic 
software systems. For each system, references, links, 
descriptions, and specifications for the seven descriptors 
described above are provided. Flexible web-based tools 
allow users to search and filter systems and references, 
as well as to contribute or update information in the 
algorithmic.net database. The ultimate goal of this site is 
a collaborative lexicon of research in computer aided 
algorithmic music composition. 
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