HW6

1. Collimators in gamma cameras have an acceptance angle (dashed lines in figure below) determined by the length l of the collimator and the diameter d of its aperture. Show that the volume of tissue sampled at a distance r from the distal end of the collimator (rectangle) is proportional to $1 / r^{2}$. Now consider the fraction of emission that reaches the collimator from the tissue volume at distance r (dotted lines) to show that the sensitivity of gamma photon detection ("efficiency") is approximately invariant with distance. What is the effect on spatial resolution of the r-dependence of the sampled volume, and why?

2. Explain or derive the formula for the rate of random coincidences between any pair of detectors in a PET scanner:
$R_{\text {random }}=2 \tau S_{1} S_{2}$
where τ is the time window within which coincidences must occur, and S_{1} and S_{2} are the singles rates of the two detectors. If 10^{5} positron annihilations per second give rise to events detected evenly across a 100-detector PET scanner (in the absence of scatter and attenuation), what value of $R_{\text {random }}$ would be observed for each pair of detectors, with $\tau=100 \mu \mathrm{~s}$, and what fraction of the total number of events would this represent?
