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Problem 10.1
(a) We pull with a force F (both ropes combined). At the point O the sidewalk exerts
an unknown force F ′ on the cylinder. The condition for just lifting the cylinder off the
street is N = 0 where N is the usual normal force the street exerts on the cylinder. We
can eliminate F ′ by measuring all torques about O. (A torque is defined as positive if it
would cause the cylinder to roll up the sidewalk.) The condition for just rotating about
the corner is τ = 0 where τ is the total torque about O.

0 = FR sin(π − (θ + α))−MgR sin
(
π −

(
π

2
− θ

))
= FR sin(θ + α)−MgR cos θ

where we use the trigonometric identities sin(π − x) = sinx and sin
(

π
2
+ x

)
= cosx.

Solving the above equation for F gives

F

Mg
=

cos θ

sin(θ + α)

(b) A local minimum or maximum occurs when

0 =
dF

dα
= −Mg · cos θ cos(θ + α)

sin2(θ + α)

The only solution to the above equation is

cos(θ + α) = 0 =⇒ α = 90◦ − θ

For θ = 30◦ then α = 60◦. By plotting F
Mg

we see that α = 60◦ is a local minimum and

the global minimum and α = 0 is the global maximum (not local). It’s not hard to show
that if θ < 45◦ then the maximum is at α = 0◦, and if θ > 45◦ then the maximum is at
α = 45◦.
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Problem 10.2
Let L = 5 m, r = 1

2
· 0.01 m, A = πr2, M = 400 kg, and Y = 0.36 × 1010 N/m2

(please see Table 14.1 on page 366 for nylon). Equation (27) on page 366 gives

∆L

L
=

1

Y

FAPP

A
=⇒ FAPP =

Y A

L
·∆L

where FAPP is the total applied force and ∆L is the corresponding increase in length. It
is convenient to define a constant k as

k =
Y A

L
≈ 5.7× 104 N/m =⇒ FAPP = k∆L

First we need to calculate the amount the rope is stretched, ∆, due to the weight of 400 kg
alone.

∆ =
Mg

k
≈ 0.070 m

(a) We need to find the additional force required to stretch the rope another 0.03 m.

F +Mg = k(∆ + 0.03) =⇒ F = k · 0.03 ≈ 1.78× 103 N

(b) Let x denote the displacement down from equilibrium. (Equilibrium corresponds
to the rope length L + ∆.) The equation above gives the necessary applied force FAPP

to stretch the rope by ∆L; therefore the rope must exert a restoring force of equal and
opposite magnitude. Therefore for a displacement of x down from equilibrium, now with
the applied force not present, the total force is

FTOT = −k(∆ + x) +Mg = −kx

where in the above, F is the total force down corresponding to the displacement x down
from equilibrium.

The above equation is valid for x such that ∆+x > 0 (x > −∆ ≈ −0.07 m) because
if ∆ + x < 0 then the rope will develop slack and the restoring force will vanish and the
form of the above equation would have to change. For the present, the initial displacement
is 0.03 m with no initial velocity, so the motion will never create slack in the rope; hence
the above equation remains valid for all the motion. The motion is, therefore, simple
harmonic in x with period

T = 2π ·
√
M

k
≈ 0.53 s

(c) With the initial condition of x = 0.10m with no initial velocity the motion will
create a slack in the rope. The mass will start at x = 0.10 m proceed through x = 0 to
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x = −0.07 m at which point the rope will start to go slack and there will be no restoring
force, only the force of gravity. The motion will no longer be completely simple harmonic
motion.

(d) The ultimate tensile strength is given by Table 14.1 on page 366 as
(

F
A

)
max

=

3.2× 108 N/m2. The maximum mass will then be

Mmax =
A

g

(
F

A

)
max

≈ 2.6× 103 kg

You can only calculate a conservative lower limit to the amount by which the rope will
stretch. As we have seen in lectures, Hooke’s law (thus ∆L

L
= F

Y A
) no longer holds near

the breaking point. The lower limit would be

∆L =
L

Y

(
F

A

)
max

≈ 0.44 m

Thus a conservative lower limit for the length of the rope is 5.44 m.

Problem 10.3
Let ρ = 1 gm/cm3 be the density of water, ρW be the density of the wood, ρO be

the density of the oil, and V be the volume of wood. For the water,

ρ · 2
3
V = ρW · V =⇒ ρW =

2

3
· ρ ≈ 0.67 gm/cm3

For the oil,

ρO · 0.9 · V = ρW · V =⇒ ρO =
1

0.9
· ρW ≈ 0.74 gm/cm3

Problem 10.4
Let p0 be atmospheric pressure, ρ = 103 kg/m3 the density of water, M the mass of

the rod, A its cross-section area, d = 3 m its equilibrium depth, and x its displacement
down from its equilibrium depth. The equilibrium depth is given by

Mg = ρgdA

The force equation is

p0A+Mg − (p0 + ρg(d+ x))A =Mẍ

where p0 + ρg(d + x) is the pressure at the bottom of the rod. If we use the expression
Mg = ρgdA in the above equation we have

3



−ρgAx = Mẍ

If we use the equivalent expression ρgA = Mg
d

in the above equation and cancel a factor
of M we have

−g

d
· x = ẍ =⇒ T = 2π

√
d

g
≈ 3.5 s

Notice that it was unnecessary to specify the value of kg ·m/s0 to evaluate the expres-
sion for T ; hence a change in atmospheric pressure of 5% will not change the period of
oscillation at all.

Problem 10.5 (Ohanian, page 378, problem 63)

Let ρ = 7.8 × 103 kg be the density of this steel. Now focus on one half of the
meter stick, and let x denote the distance from the axis of rotation to a particular bit
of length dx. If the cross-section area is A then the corresponding mass is dm = ρAdx.
The centripetal force required to accelerate this bit of steel is dF = dm · ω2x = ρAω2xdx
where ω is the angular velocity of the meter stick. The total tension at the center of the
meter stick is then

T =
∫
dF =

∫ 1
2

0
ρAω2xdx = ρAω2 1

2
x2

∣∣∣∣
1
2

0
=

ω2ρA

8
=⇒

ω =

√
8

ρ

T

A

where 1
2
is the length of half the meter stick. The maximum angular velocity is

ωmax =

√
8

ρ

(
T

A

)
max

≈ 624 radian/s

where the ultimate tensile strength for steel,
(

T
A

)
max

= 3.8× 108 N/m2, is given in Table
14.1 on page 366.

Problem 10.6 (Ohanian, page 537, problem 13)

(a) The rate of increase of heat is the amount of energy deposited by each electron
(3.2× 10−9 J) times the rate for electrons (3.0× 1014 s−1).

∆Q

∆t
= 3.2× 10−9 · 3.0× 1014 = 9.6× 105 J/s ≈ 230 kcal/s

where the conversion used is 1 cal = 4.186 J.
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(b) The mass of water in the beam dump is m = 103 × kg/m3 · 12 m3 = 1.2× 104 kg.
Equation (1) on page 517 is

∆Q = mc∆T

Therefore the rate of increase of temperature is

∆T

∆t
=

1

mc

∆Q

∆t
≈ 0.019◦C/s

where the specific heat capacity for water is given by Table 20.1 on page 516 as c =
1.00 kcal/kg ·◦ C.

Problem 10.7 (Ohanian, page 512, problem 17)

The volume of one mole of gas at STP is

V =
RT

p
≈ 8.31 · 273

105
≈ 0.0227 m3

The volume occupied by the helium atoms is

Vatom ≈ 6.02× 1023 · 3 · 10−30 ≈ 1.81× 10−6 m3

Therefore the fraction of volume occupied by the helium atoms is

f =
Vatom

V
≈ 8× 10−5 = 0.008%

Problem 10.8 (Ohanian, page 513, problem 24)

(a) Let p = 1 atm = 1.01 × 105 N/m2, A be the cross-section area of the diving bell,
h = 2 m, and h′ be the height of air in the diving bell once it is immersed. Then p′, the
pressure of air in the diving bell once it is immersed, is given by the pressure of the water
at a depth of 15 m.

p′ = p+ ρgz

where ρ = 103 kg/m3 is the density of water, and z = 15 m. This gives the value

p′ = 2.48× 105 N/m2

Assuming the temperature is constant, then

phA = pV = p′V ′ = p′h′A =⇒ h′ =

(
p

p′

)
h ≈ 0.81 m
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Therefore the water rises 2− 0.81 ≈ 1.2 m.

(b) The air must be pumped in at a pressure equal to the pressure of the water at the
bottom of the diving bell, which is at a depth of 15 + 1.2 = 16.2 m. The pressure at that
level is

pf = p+ ρgz ≈ 2.6× 105 N/m2

where z = 16.2 m. The amount of air required at that pressure is
pf V

RT
where V ≈ 3.5 m3

and T = 15◦C = 288 K. The original amount of air is pV
RT

. Therefore the number of moles

which must be added is
(pf−p)V

RT
. The mean molecular mass of air is 29 g. (Please see

Example 3 on page 498.) Therefore the mass of air which must be added is

M = (0.029) · (pf − p)V

RT
≈ 6.84 kg

Problem 10.9 (Ohanian, page 512, problem 16)

We will assume that the air forming the bubble does satisfy the ideal gas law.

pV = nRT

If the temperature and the amount of air remains constant, then the right-hand side of
the above equation is constant.

p1V1 = p2V2 (1)

The pressure and volume at the depth of 15 m is

p1 = 1.013× 105 N/m2 + (9.8 m/s2)(1.0× 103 kg/m3)(15 m) = 2.483× 105 N/m2

V1 =
4

3
π

(
1.0 cm

2

)3

= 5.236× 10−7 m3

The pressure at the surface is

p2 = 1 atm = 1.013× 105 N/m2

Using Equation (1) gives the volume at the surface as

V2 =
p1

p2

· V1 = 1.283× 10−6 m3

Assuming the bubble remains spherical, the diameter at the surface is given by

d = 2 ·
(
3V2

4π

) 1
3

= 1.348× 10−2 m = 1.348 cm
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Problem 10.10 (Ohanian, page 512, problem 21)

The density of the external air is ρa = 1.20 kg/m3. The mass of the balloon, etc.
without the air is Mb = 730 kg, and the volume of the balloon is Vb = 2200 m3. If the
mass of the hot air inside the balloon is M and the equivalent mass of cold air (same
volume but atmospheric temperature) is ρaVb, then the condition for the balloon to just
lift-off is

ρaVb −M = Mb =⇒ M = ρaVb −Mb = 1.91× 103 kg

The balloon is open at the bottom, so the pressure of the air within is the same as the
pressure of the external air. The mass per mole of air is given in Example 3 on page 498
as m = 29.0 g/mole. The pressure of the external air at Ta = 20◦C = 293.15 K is

pa =
naRTa

Va

=
nam

Va

· RTa

m
= ρa · RTa

m
= 1.0086× 105 N/m2

The air within the balloon has the mass

M = mnb = m · pbVb

RTb

=⇒ Tb = m · pbVb

RM
= 405 K = 132◦C

where pb = pa.

Problem 10.11 (Ohanian, page 513, problem 28)

Consider a slab of air with horizontal area A and height dh. The pressure difference
between the bottom and the top of the slab must support the weight of the air within the
slab.

pA− (p+ dp)A− (A dh) · ρ · g = 0 =⇒ dp = −ρg dh (2)

If we would assume that ρ is a constant, then we would derive the usual result for pressure,
but if the temperature remains constant with height, then the density must vary with
height. We can obtain a relationship between the pressure and density by using the ideal
gas law.

p =
N

V
· kT =

mN

V
· kT
m

= ρ
kT

m
=⇒ ρ =

mp

kT

where m = 29.0 g
NA

= 4.82 × 10−26 kg is the mass of one molecule of air. We can use the
above to write Equation (2) as

dp = −p · mg

kT
dh

This is now a valid differential equation for the pressure, p, as a function of height, h. We
can solve this equation by following these steps.
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1

p
dp = −mg

kT
dh

ln p− ln p0 =
∫ dp

p
= −mg

kT

∫
dh = −mg

kT
(h− 0)

p = p0e
−mgh

kT

Problem 10.12 (Ohanian, page 535, problem 5)

The lateral loops act as gaps to allow for thermal expansion in the long oil pipelines.
Even for a small change in temperature, the increase in length of the pipeline could be
very large. This would prevent the pipeline from being attached rigidly at each end. The
loops allow each shorter section of pipe to stretch but prevent the net effect from being
cumulative. Since the oil must still flow loops must be used instead of simple gaps as in
bridges.
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