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Problem 6.1 (Ohanian, page 291, problem 13)

The masses of the two automobiles are m1 = 540 kg and m2 = 1400 kg and their
velocities, measured along the original direction of m1, are v1 = 80 km/h ≈ 22.22 m/s
and v2 = −80 km/h ≈ −22.22 m/s.

(a) We are told that the two automobiles remain locked together after the collision.
After the collision both automobiles move as one, hence they both must have the same
velocity which must also be the velocity of the center of mass (vCM). There are no
outside forces, so the velocity of the center of mass remains unchanged during the collision.
Therefore

vCM =
m1v1 + m2v2

m1 + m2

=
540− 1400

540 + 1400
· 80 km/h ≈ −35 km/h ≈ −9.9 m/s

The velocity of the wreck is given by vCM . Note, it was unnecessary to convert from the
non-metric unit “km/h” if we wanted the value of vCM in units of “km/h”.

(b) The total kinetic energy before the collision is

Kbefore =
m1v

2
1

2
+

m2v
2
2

2
=

1

2
(540)(22.22)2 +

1

2
(1400)(22.22)2 ≈ 4.8× 105 J

The total kinetic energy after the collision is

Kafter =
(m1 + m2)v

2
CM

2
≈ 8.2× 104 J

Note, it was necessary to convert from “km/h” to “m/s” to achieve an answer in units of
“J”.

(c) This calculation is best done in the center of mass frame. Since there are no
outside forces, this frame is inertial; hence the acceleration in this frame is the same as
the acceleration relative to the ground. We will make use of the kinematic relation

a =
v2 − v2

0

2(x − x0)
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For the automobile of mass m1, its speed in the center of mass frame is

v′
1 = v1 − vCM = 22.2− (−9.9) = 32.1 m/s

The acceleration the passenger compartment experiences is given by

a1 =
v′2

1

2d
≈ 8.6× 102 m/s2

For the automobile of mass m2, its speed in the center of mass frame is

v′
2 = v2 − vCM = −22.2− (−9.9) = −12.3 m/s

The acceleration the passenger compartment experiences is given by

a2 =
v′2

2

2d
≈ 1.3× 102 m/s2

Problem 6.2 (Ohanian, page 292, problem 23)

This problem is illustrated in Figure 11.12 on page 292. Let m be the mass of each
steel ball. The first steel ball swings and gains kinetic energy until it collides with the
second steel ball. Initially the first steel ball is at rest at an angle θ relative to vertical,
so its height relative to the bottom of the swing is

h = l(1− cos θ)

Its mechanical energy is

E = mgh = mgl(1− cos θ)

At the bottom of its swing, just before the collision, its mechanical energy is

E =
mv2

2

Conservation of mechanical energy gives

mgl(1− cos θ) =
mv2

2
=⇒ v =

√
2gl(1− cos θ)

Also in terms of just h, conservation of mechanical energy gives

mgh =
mv2

2
=⇒ h =

v2

2g
(1)
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(a) Because we are told the collision is elastic, we know that kinetic energy is conserved.
Momentum is also conserved. If we label the velocity, before the collision, of the first steel
ball v1, and we label the velocity, after the collision, of the first and second steel balls v′

1

and v′
2 respectively, then

mv2
1

2
=

mv′2
1

2
+

mv′2
2

2

and

mv1 = mv′
1 + mv′

2

These equations are precisely the same equations for one-dimensional collisions. The
solution is given in Equations (11) and (12) on page 277.

v′
1 =

m − m

m + m
· v1 = 0

v′
2 =

2m

m + m
· v1 = v1

All of the mechanical energy is transferred to the second steel ball (since the first steel
ball comes to rest), so the second steel ball must reach the same height as the first one
started from.

h′ =
v′2

2

2g
=

v2
1

2g
= h

(b) We are told the putty balls remain stuck together after the collision. If we label
the velocity of the joined putty balls after the collision v′, then momentum conservation
gives

mv1 = 2mv′ =⇒ v′ =
v1

2

h′ =
v′2

2g
=

(
v1

2

)2

2g
=

1

4
· v2

1

2g
=

h

4

Problem 6.3
Let mJ = 100 kg, mN = 80 kg, and mB = 10 kg. There are no outside forces acting

on John, Nancy, or the block, so momentum is conserved. Velocity will be considered
positive when it is directed from John to Nancy. Note that kinetic energy is not necessarily
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conserved: John and Nancy can interchange internal energy with kinetic energy by sliding
and catching the block.

(a) Let vJ1 be the velocity of John’s sled and vB1 be the velocity of the block after John
releases the block. The speed of the block relative to John’s sled is said to be 3 m/s, thus

vB1 = vJ1 + 3

Momentum conservation gives

0 = mJvJ1 + mBvB1 = mJvJ1 + mB(vJ1 + 3) =⇒

vJ1 = − 3mB

mJ + mB

≈ −0.27 m/s =⇒

vB1 = vJ1 + 3 =
3mJ

mJ + mB

≈ 2.7 m/s

(b) Let vN1 be the velocity of Nancy’s sled after she catches the block. Momentum
conservation gives

mBvB1 = (mB + mN)vN1 =⇒

vN1 =
mB

mB + mN

· vB1 =
mB

mB + mN

· 3mJ

mJ + mB

≈ 0.30 m/s

(c) Let vN2 be the velocity of Nancy’s sled and vB2 be the velocity of the block after
Nancy slides the block to John. The speed of the block relative to Nancy’s sled is said to
be 3 m/s, thus

vB2 = vN2 − 3

(Note that here it is “−3” and above it is “+3”. This is due to our choice for positive
velocity.) Momentum conservation gives

(mB + mN)vN1 = mBvB2 + mNvN2 = mB(vN2 − 3) + mNvN2 =⇒

vN2 =
(mB + mN)vN1 + 3mB

mB + mN

≈ 0.63 m/s =⇒

vB2 = vN2 − 3 ≈ −2.4 m/s

(d) Let vJ2 be the velocity of John’s sled after he catches the block. Momentum
conservation gives
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mJvJ1 + mBvB2 = (mJ + mB)vJ2 =⇒ vJ2 =
mJvJ1 + mBvB2

(mJ + mB)
≈ −0.46 m/s

(e) The total kinetic energy of the block and sled after John releases the block is

K =
mJv2

J1

2
+

mBv2
B1

2
≈ 41 J

Initially there was no kinetic energy, but John converts chemical energy (stored in his
muscles) to kinetic energy by sliding the block to Nancy.

(f) The total kinetic energy of the two sleds and the block just after Nancy catches the
block is

K =
mJv2

J1

2
+
(mB + mN)v

2
N1

2
≈ 7.9 J

There are internal forces involved when Nancy catches the block. These forces convert
kinetic energy into other forms of energy.

(g) The total kinetic energy of the two sleds and the block just after Nancy releases
the block is

K =
mJv2

J1

2
+

mBv2
B2

2
+

mNv2
N2

2
≈ 48 J

Nancy converts chemical energy (stored in her muscles) to kinetic energy by sliding the
block back to John.

(h) The total kinetic energy of the sleds after John catches the block is

K =
(mB + mJ)v

2
J2

2
+

mNv2
N2

2
≈ 28 J

There are internal forces involved when John catches the block. These forces again convert
kinetic energy into other forms of energy.

Problem 6.4
The center of mass frame is defined as the frame in which the center of mass is at

rest, so the two pucks must travel in opposite directions in that frame. If v1 and v2 are
the velocities respectively of masses m1 and m2, then

m1v1 + m2v2 = 0 =⇒ v1 = −m2

m1

· v2

Clearly the total momentum is zero, but the kinetic energy is
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K =
m1v

2
1

2
+

m2v
2
2

2

We will find it convenient to use the relationship between v1 and v2 to eliminate v1 from
the kinetic energy.

K =
m1v

2
1

2
+

m2v
2
2

2
=

m1

2

(
m2

m1

· v2

)2

+
m2v

2
2

2
=

m2v
2
2

2
·
(

m2

m1

+ 1
)

(a) We are told that the collision is elastic, so kinetic energy is conserved. Also, there
are no relevant outside forces acting on the pucks, so momentum is conserved. If we let
�v′

1 and �v′
2 label the velocities after the collision then momentum conservation gives

0 = m1�v
′
1 + m2�v

′
2 =⇒ �v′

1 = −m2

m1

�v′
2 =⇒ |v′

1| =
m2

m1

· |v′
2|

This is the same relation as v1 and v2 above, so the kinetic energy is given similarly by

K =
m1|v′

1|2
2

+
m2|v′

2|2
2

=
m2|v′

2|2
2

·
(

m2

m1

+ 1
)

Then conservation of kinetic energy gives

m2v
2
2

2
·
(

m2

m1

+ 1
)
=

m2|v′
2|2

2
·
(

m2

m1

+ 1
)

=⇒

|v′
2| = v2 =⇒ v1 =

m2

m1

· v2 =
m2

m1

· |v′
2| = |v′

1|

Thus the general conclusion using only kinetic energy conservation and momentum con-
servation is

|v′
2| = v2 and |v′

1| = v1 and �v′
1 = −m2

m1

�v′
2

This indicates that the directions are exactly opposite.

(b) Any two vectors �v′
1 and �v′

2 that satisfy the above equation will also satisfy kinetic
energy and momentum conservation. If we let n̂ represent a unit vector in the plane, then

�v′
1 = v1n̂ and �v′

2 = −v2n̂

are all solutions, thus any direction of motion is consistent with kinetic energy and mo-
mentum conservation.
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(c) The total kinetic energy in the center of mass frame before the collision was given
above as

K =
m2v

2
2

2
·
(

m2

m1

+ 1
)

(d) We assumed that the collision was elastic, so kinetic energy is conserved. Therefore
the total kinetic energy after the collision is given as

K =
m2|v′

2|2
2

·
(

m2

m1

+ 1
)
=

m2v
2
2

2
·
(

m2

m1

+ 1
)

Problem 6.5
The tennis ball and basketball do not collide until after the basketball strikes the

ground. Both balls fall the same distance, call it h; hence both have the same velocity,
v =

√
2gh just before the basketball strikes the ground. The mass of the basketball is

insignificant compared to the mass of the planet; thus the basketball will bounce back
up with the same speed, v. (We assume that the collision is elastic, i.e. kinetic energy is
conserved.)

Now the tennis ball and basketball collide. This collision is best viewed from the
frame moving with the basketball. In this frame the tennis ball travels at a speed 2v and
strikes the basketball at rest. The basketball is much heavier than the tennis ball, thus
the tennis ball will bounce back up with the same speed, 2v. (Again, we assume that
the collision is elastic.) In the original frame, the tennis ball has the speed 2v + v = 3v.

Therefore, the height it will reach is h′ = (3v)2

2g
= 9v2

g
= 9h.

Problem 6.6
Let m = 6 kg, v = 350 m/s, m1 = 2 kg, v1 = 250 m/s, m2 = 4 kg, and v2 =

400 m/s.

(a) The total momentum before the collision is

Pbefore = mv = 2.1× 103 kg ·m/s

The total momentum after the collision is

Pafter = m1v1 + m2v2 = 2.1× 103 kg ·m/s

Therefore, Pbefore = Pafter, and momentum is conserved.

(b) The total kinetic energy before the collision is

Kbefore =
mv2

2
≈ 3.68× 105 J
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The total kinetic energy after the collision is

Kafter =
m1v

2
1

2
+

m2v
2
2

2
≈ 3.83× 105 J

Therefore, Kbefore �= Kafter, and kinetic energy is not conserved.

(c) The center of mass velocity before the collision is

Vbefore =
mv

m
= v = 350 m/s

The center of mass velocity after the collision is

Vafter =
m1v1 + m2v2

m1 + m2

= 350 m/s

Therefore, Vbefore = Vafter, and center of mass velocity does not change.

(d) First we must transform the velocities v, v1, and v2 into the appropriate center of
mass. Let v′, v′

1, and v′
2 denote the corresponding velocities in the appropriate center of

mass.

v′ = v − Vbefore = v − v = 0

v′
1 = v1 − Vafter = 250− 350 = −100 m/s

v′
2 = v2 − Vafter = 400− 350 = 50 m/s

The total momentum before the collision in the center of mass frame is

Pbefore = mv′ = 0

The total momentum after the collision in the center of mass frame is

Pafter = m1v
′
1 + m2v

′
2 = 0

Therefore, Pbefore = Pafter, and momentum is conserved in the center of mass frame. The
total kinetic energy before the collision in the center of mass frame is

Kbefore =
mv′2

2
= 0

The total kinetic energy after the collision in the center of mass frame is

Kafter =
m1v

′2
1

2
+

m2v
′2
2

2
= 1.5× 104 J

Therefore, Kbefore �= Kafter, and kinetic energy is not conserved in the center of mass
frame. None of the previous conclusions change.
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Problem 6.7
Let mA = m and mB = 3m.

(a) The table is assumed to be frictionless, so the only other force is the spring force
which is conservative; hence mechanical energy is conserved. (Gravity and the normal
force are present, but if the table is level then these forces precisely balance and thus are
irrelevant.) Therefore, the total mechanical energy of the system is constant, and we can
evaluate it at t = 0, at which time both masses are at rest and the spring has potential
energy U0.

E = U0

(b) In general if KA and KB are the kinetic energies of mass A and mass B and US is
the potential energy of the spring, then the mechanical energy is

E = KA + KB + US

Mechanical energy conservation gives

U0 = KA + KB + US =⇒ US = U0 − KA − KB

(c) There are no outside forces acting on this system, so momentum is conserved.
(Again, gravity and the normal force are irrelevant since they cancel.) Therefore, the
total momentum of the system is constant, and we can evaluate it at t = 0, at which time
both masses are at rest.

P = 0

Now suppose at some time the velocities are �vA and �vB. Then

P = mA �vA + mB �vB = m �vA + 3m �vB

Momentum conservation gives

0 = m �vA + 3m �vB =⇒ �vB = −1

3
�vA =⇒ |vB| = 1

3
| �vA|

(d) The result above demonstrates that the particles are always moving in opposite
directions. Thus if A is moving in the +x direction then B is moving in the −x direction.

(e) It is convient if we choose the center of our coordinate system to coincide with
the center of mass of the system. Let xA and xB label the position of mass A and B
respectively. Then by definition of the center of mass
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0 = mAxA + mBxB = mxA + 3mxB =⇒ xB = −1

3
xA

Then the force acting on A is

mẍA = F = −k(xA + xB − l0) = −k(xA +
1

3
xA − l0) = −4k

3
· (xA − 3

4
l0)

Thus the equation of motion is

ẍA = − 4k

3m
· (xA − 3

4
l0)

This indicates that the motion is simple harmonic with frequency

ωA =

√
4k

3m

A similar argument for B yields

3mẍB = F = −k(xA + xB − l0) = −k(3xB + xB − l0) = −4k · (xA − l0) =⇒

ωB =

√
4k · 1

3m
=

√
4k

3m

Thus the motion is also simple harmonic in xB with the same frequency ω given by

ω =

√
4k

3m

Problem 6.8 (Ohanian, page 294, problem 38)

Collisions in two dimensions are discussed in Section 11.3 beginning on page 281.
The relevant results, using conservation of momentum and kinetic energy, are

m1v1 = m1v
′
1 cos θ′1 + m2v

′
2 cos θ′2

0 = m1v
′
1 sin θ′1 − m2v

′
2 sin θ′2

m1v
2
1

2
=

m1v
′2
1

2
+

m2v
′2
2

2
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where the various quantities are illustrated in Figure 11.6 on page 281. For the problem
at hand, m1 = m2 = m where m = 1.673× 10−27 kg is the mass of the proton; this allows
us to cancel the masses on each side of the equation. The equations above become

v1 = v′
1 cos θ′1 + v′

2 cos θ′2 (2)

0 = v′
1 sin θ′1 − v′

2 sin θ′2 (3)

v2
1 = v′2

1 + v′2
2 (4)

We are given the energy for the initial proton, which will give us v1, and we can measure
θ′1 and θ′2 from the picture; thus the above equations will suffice to determine v′

1 and
v′

2, which will then determine the energy of each outgoing proton. To solve the above
equations, multiply Equation (??) by sin θ′2, and multiply Equation (??) by cos θ′2. The
resulting equations are

sin θ′2v1 = v′
1 sin θ′2 cos θ′1 + v′

2 sin θ′2 cos θ′2 (5)

0 = v′
1 sin θ′1 cos θ′2 − v′

2 sin θ′2 cos θ′2 (6)

If we add Equation (??) and Equation (??) then we get

sin θ′2v1 = v′
1(sin θ′2 cos θ′1 + sin θ′1 cos θ′2)

This gives us an equation for v′
1

v′
1 =

sin θ′2
sin θ′2 cos θ′1 + sin θ′1 cos θ′2

· v1

We can measure the angles from the picture: θ′1 ≈ 45◦ is the angle of PB relative to AP
and θ′2 ≈ 44◦ is the angle of PC relative to AP . This gives

v′
1 ≈ 0.695 · v1

Using Equation (??) gives

v2
1 = v′2

1 + v′2
2 =⇒ v′

2 =
√

v2
1 − v′2

1 ≈ 0.719 · v1

The energy for the proton initially traveling along AP is

E1 =
mv2

1

2
= 8.0× 10−13 J
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The energy for the proton traveling along PB is

E ′
1 =

mv′2
1

2
= (0.695)2 · mv2

1

2
= 0.483 · E1 ≈ 3.9× 10−13 J

The energy for the proton traveling along PC is

E ′
2 =

mv′2
2

2
= (0.719)2 · mv2

1

2
= 0.516 · E1 ≈ 4.1× 10−13 J

Problem 6.9
We can use Equation (51) on page 263 which relates the initial velocity and mass

(vi and Mi) to the velocity and mass at a later time (vf and Mf ) given the exhaust gas
speed uex.

vf − vi = uex ln

(
Mi

Mf

)

We are told that vi = 8 × 103 m/s, vf = 8.5 × 103 m/s, and uex = 2.5 × 103 m/s. If we
assume that the shuttle uses all its fuel, then Mf = 105 kg and Mi = MF + Mf where
MF is the mass of the fuel. We can solve the above equation for MF by the following
sequence of steps.

vf − vi = uex ln

(
MF + Mf

Mf

)

vf − vi

uex

= ln

(
MF + Mf

Mf

)

e
vf−vi

uex =
MF + Mf

Mf

MF = Mfe
vf−vi

uex − Mf ≈ 2.2× 104 kg

Problem 6.10
Rocket motion is discussed in Lecture Supplement “Rocket Equations - supplements

for 10/20/99” on the 801 Home Page.

(a) If the exhaust speed is uex and the burn rate is R then the thrust Fth is given by

Fth = uexR =⇒ uex =
Fth

R

We are told that Fth = 34× 106 N and R = 13.8× 103 kg/s, thus the exhaust speed is
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uex =
Fth

R
=

34× 106

13.8× 103
≈ 2.5× 103 m/s

(b) The engines will burn until there is no more fuel. If the initial mass of the
rocket and fuel is Mi = 2.85 × 106 kg and the final mass of the rocket (with no fuel) is
Mf = 0.77× 106 kg then the mass of fuel MF is

MF = Mi − Mf = 2.85× 106 − 0.77× 106 = 2.08× 106 kg

If the burn rate is constant, then the burn time T is given by

R =
MF

T
=⇒ T =

MF

R
=

2.08× 106

13.8× 103
≈ 151s

(c) The force equation for the rocket is

M(t) · a = Fth − M(t) · g =⇒ a =
Fth

M(t)
− g

where M(t) is the mass of the rocket and fuel inside the rocket at time t. The initial mass
is M(0) = Mi, so the initial acceleration is

a =
Fth

Mi

− g =
34× 106

2.85× 106
− 10 ≈ 1.9 m/s2

(d) The final mass is M(T ) = Mf , so the acceleration just before the engines stop is

a =
Fth

Mf

− g =
34× 106

0.77× 106
− g ≈ 34 m/s2

(e) The solution to the above differential equation is

vf = −u ln
(

Mf

Mi

)
− gt

At t = T = MF

R
, RT = MF and Mi − MF = Mf , so the speed is

vf = −2.5× 103 · ln
(
0.77× 106

2.85× 106

)
− 10 · 151 ≈ 1.8× 103 m/s

Problem 6.11 (Ohanian, page 271, problem 54)

We are told that the reaction products have a mass of 4.4 kg and that these products
have a kinetic energy of 4.2 ×107 J. If the velocity of this mass is u then

4.4 · u2

2
= 4.2× 107 =⇒ u = 4.4× 103 m/s
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