
Physics 8.01 Assignment 1
1.1

Figure 1: sunset

We treat the sun as an object that is rotating about the earth with
uniform angular velocity, and that rises and sets vertically (this is
assured by being on the equator on the equinox). We first need to
know the angle sun must rotate through during the sunset (α). If
we can then get the angular speed of the sun as we see it we can get
the time it takes for the sunset.
α is small ⇒ α � tan α = D

R
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D = 13.92 × 108m
R = 1.50 × 1011m
α = 9.28 × 10−3radians

The angular velocity follows from fact sun will rotate 2π radians
during 24 hours:
ωsun = 2π

24×60×60
= 7.27 × 10−5 radians

s
The time is the angular size of the sun divided by the angular
velocity, analogous to the case with distance and linear velocity.
Tsunset = α

ωsun
= 9.28×10−3

7.27×10−5 = 128s ≈ 2min.
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1.2

a)

Dimensional consistency of
v : m

s
x : m
a : m

s2

RHS: m2

s2

LHS: m2

s2 + m × m
s2 ∝ m2

s2

√

b)

Both LHS and RHS have the same dimensions. These are now
multiplied by mass with units kg.
kg × m2

s2 : Joules
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1.3

a)

Figure 2: Problem 3
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b)
The Person who spends less time walking and more time run-

ning will win. Initially they walk along together, but Tim starts
running sooner because he has only to walk 1/2 the time it will take
him, not 1/2 the distance which makes Rick take longer to reach
D as the graph shows (note the specific times designated on the
graph).

c)
Rick

t1 = D/2
Vw

(t1 / : the time that Rick reaches D/2)

tR − t1 = D/2
Vr

tR = D
2VwVr
Vr+Vw

d)
V R = D

tR
= 2VrVw

Vr+Vw

e)
Tim
tT
2

Vr + tT
2

Vw = D

tT = D
(Vr+Vw)/2
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1.4
I:
a =

vf−vi

∆t
Definition of average acceleration

vi = 0 (starts at rest)
∆t = 6s
vf = 90m/s

II:
Distance ∼ area under v(t) curve

III:
amax = 45 ⇒ Dmin archived by a straight line from a point on t axis
to vf = 90m/s at tf = 6. ∆t = 90/45 = 2 ⇒ starts moving at 4.

Any line before 4 to 90 m/s has a lower slope so we wouldn’t violate
the amax condition. To get twice the distance I look for a line that
has twice the area under it. The easiest choice is the line from 2s
to 90 m/s. The triangle under it has twice the base and the same
altitude, hence twice the area.

Figure 3: Problem 4
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1.5

a = −10m/s2

∆t = 2.0
g: hitting the ground r: reflection from the ground
f = 0.71
These are the three basic kinematic equations written with arbitrary
time for the initial conditions (instead of the conventional t=0).
Eq. 1: x(t) = x(t0) + v(t′)(t − t0) + 1

2
a(t − t0)

2

Eq. 2: v(t) = v(t0) + a(t − t0)
Eq. 3: v2(t) − v2(t0) = +2a[x(t) − x(t0)]

We should pay attention that t0 in these equations is the initial time,
not necessarily zero. So for each region as you see in the picture there
are different initial conditions for v0 and t0. We should first write
the appropriate y(t) for each region. Setting the two y(t)’s for the
two balls gives us the time of the collision time tc.
Forthefirstball :

Eq.1 ⇒ tg1 =
√

2 = 1.41s

Eq.3 ⇒ vg1 =
√

200 = 14.1m/s
vr1 = fvg1 = 10m/s
vg2 = −vr1 ∧ Eq.2 ⇒ tg2 − tg1 = 2×10

10
= 2.0

Because the time it takes that second ball hit the ground is again
1.41 and because 2.0 +1.41 = 2.0+ 1.41! The second hits the first
ball when the first ball hits the ground itself.

However, if you change ∆t say 1.8 you would get a different answer.
I also write the systematic way of solving this problem:

Between the first hit and the second one ball #1 is at y1(t) and ball
32 is at y2(t)
y1(t) = 0 + 14.1f(t − 1.41) − 5(t − 1.41)2

y2(t) = 10 − 5(t − 2)2

Collision time: tc
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y2(tc) = y1(tc)

Solving this with will give you 3.41 for t̃ as expected! (But you have
to be careful that your solution is in the region of validity of both
y1 and y2.

Figure 4: Collision
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