Your Name

\qquad Section \qquad

HOMEWORK \#2 - 8.01 MIT - Prof. Kowalski

Due 4:00PM Thursday Sept. 18, 2003

Topics: Vectors and Two dimensional motion

The following problems are from Young and Freedman $11^{\text {th }}$ edition.

1. 1.38
2. 1.70
3. 1.50
4. 1.52

Find the vector product of the three vector pairs given in this problem (1.52).
5. 2.27
6. 2.98

7. IndoorCannon

A toy cannon is placed on the floor of a large room with a ceiling whose height is H . The cannon fires its ball with speed v_{0}. The objective in this problem is to give an analytic expression for the farthest that the cannon can shoot (at the optimized angle) without having the ball hit the ceiling.
a) Below a certain v_{0}, call it $\mathrm{v}_{\text {crit }}$ the presence of the ceiling does not affect the maximum range of the cannon. Find the range and the v 0 at which the ceiling first limits the range.
b) Above $\mathrm{v}_{\text {crit }}$ the ceiling limits the range. Find the range, $\mathrm{R}(\mathrm{H})$, in this regime.
c) How much does a ceiling with $\mathrm{H}=5 \mathrm{~m}$ restrict the range of a cannon with $\mathrm{v}_{0}=20$ m / s ? Find the distance lost, $\mathrm{R}_{\text {lost }}$

