Problem 1: Kinematics (15 pts)
A particle moves along a straight line x. At time $t=0$, its position is at $x=0$. The velocity, V, of the object changes as a function of time, t, as shown in the figure. V is in $\mathrm{m} / \mathrm{s}, x$ is in meter, and t is in seconds.
(a) What is x at $t=1 \mathrm{sec}$?
(b) What is the acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ at $t=2 \mathrm{sec}$?
(c) What is x at $t=4 \mathrm{sec}$?
(d) What is the average speed $(\mathrm{m} / \mathrm{s})$ between $t=0$ and $t=3 \mathrm{sec}$?

Solution:
(a) From the area blow the velocity curve, we find $x=6 \mathrm{~m}$ at $t=1$.
(b) From the slope of the velocity curve at $t=2$, we find $a=(-6-6) / 2=-6 \mathrm{~m} / \mathrm{s}^{2}$.
(c) The area below the $v=0$-line has a negative contribution to the displacement. We find $x=0$ at $t=4$.
(d) The area below the $v=0$-line has a negative contribution to the total distance traveled. Average speed $=(6+3+3) / 3=4 \mathrm{~m} / \mathrm{s}$. (Different from average velocity which is $(6+3-3) / 3=$ $2 \mathrm{~m} / \mathrm{s}$)

Problem 2: Surveillance Balloon (15 pts)
A gun crew observes a remotely controlled balloon launching an instrumented spy package in enemy territory. When first noticed the balloon is at an altitude of 800 m and moving vertically upward at a constant velocity of $5 \mathrm{~m} / \mathrm{s}$. It is 1600 m down range. Shells fired from the gun have an initial velocity of $400 \mathrm{~m} / \mathrm{s}$ at a fixed angle $\theta(\sin \theta=3 / 5$ and $\cos \theta=4 / 5)$. The gun crew (using its 8.01 ballistic knowledge) waits and fires so as to destroy the balloon. Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Neglect air resistance.
(a) What is the flight time of the shell before it strikes the balloon?
(b) What is the altitude of the collision?
(c) How long did the gun crew wait before they fired?

Solution:
(a) The motion in the x-direction is a constant velocity motion. We find the flight time $=$ $1600 m / v_{x}=1600 /(400 \cos \theta)=1600 /(1600 / 5)=5 s e c$.
Flight time $=5 s e c$.
(b) From the flight time, the initial velocity in the y-direction and the acceleration in the y-direction, we can calculate the altitude of the shell: $h=v_{y} t-\frac{1}{2} g t^{2}=\frac{1200}{5} \times 5-\frac{1}{2} \times 10 \times 25=$ $1200-125=1075 \mathrm{~m}$.
Altitude $=1075 \mathrm{~m}$.
(c) After the waiting time plus the flight time, the balloon should reach the same altitude as the shell. Let t_{w} be the waiting time. We have $h=\left(t_{w}+5\right) \times 5+800=1075$.
$t_{w}+5=275 / 5=55 \mathrm{sec}$. So $t_{w}=50 \mathrm{sec}$.
The waiting time $=50 \mathrm{sec}$.

Problem 3: Crossing a river (25 pts)
Two ports, A and B, on a North-South line are separated by a river of with D. The river flows east with speed V_{W}. A boat cross the river from port A to port B. The speed of the boat relative to the water is V_{B}. Assume $V_{B}=2 V_{W}$. State all your answers in terms of V_{B} and D.
(a) What is the direction of the boat, θ, relative to the North so that it crosses directly on a line from A to B? How long does the trip take?
(b) Suppose the boat wants to cross the river from A to the other side in the shortest possible time. What direction should it head? (Hint: Think carefully about what this means.) How long does the trip take? How far is the boat from the port B after crossing?

Solution:
(a) To reach the port B , the x-component of the total velocity must be zero: $V_{B} \sin \theta-V_{w}=0$. So $\sin \theta=1 / 2$.
The y-component of the total velocity is $V_{B} \cos \theta$. So $t=\frac{D}{V_{B} \cos \theta}=\frac{2 D}{V_{B} \sqrt{3}}$.
The direction θ is 30° relative to the North, or 30° West of the North.
The trip takes $t=\frac{2 D}{V_{B} \sqrt{3}}$.
(b) To cross the river the fastest, we need to maximize the the y-component of the total velocity is $V_{B} \cos \theta$. So $\theta=0$. The boat should head straight to the North.
The trip takes $t=\frac{D}{V_{B}}$.
The y-component of the total velocity is V_{W}. So the boat is a distance $t V_{W}=D V_{W} / V_{B}$ down stream from the port B after crossing.

Problem 4: Force and Acceleration (25 pts)
A particle of mass $m=5 \mathrm{~kg}$, is momentarily at rest at $x=0$ at $t=0$. It is acted upon by two forces \vec{F}_{1} and $\vec{F}_{2} . \vec{F}_{1}=70 \hat{j} \mathrm{~N}$. The direction and magnitude of \vec{F}_{2} are unknown. The particle experiences a constant acceleration, \vec{a}, in the direction as shown. Note: $\sin \theta=4 / 5$, $\cos \theta=3 / 5$, and $\tan \theta=4 / 3$. Neglect gravity.
(a) Find the missing force \vec{F}_{2}. Either give magnitude and direction of \vec{F}_{2} or its components. Plot \vec{F}_{2} on the figure. What angle does \vec{F}_{2} make to the x-axis?
(b) What is the velocity vector of the particle at $t=10 \mathrm{sec}$?
(c) What third force, \vec{F}_{3}, is required to make the acceleration of the particle zero? Either give magnitude and direction of \vec{F}_{3} or its components.
(d) What is the vector sum of the three forces: $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=$?

Solution:
(a) $F_{2 x}=m a_{x}-F_{1 x}=5 \times 10 \times \cos \theta-0=30 N$.
$F_{2 y}=m a_{y}-F_{1 y}=5 \times 10 \times \sin \theta-70=-30 N$.
$\vec{F}_{2}=(30,-30) N$.
(b) $\vec{v}=10 \times \vec{a}=(60,80) \mathrm{m} / \mathrm{s}$, or
$|\vec{v}|=100 \mathrm{~m} / \mathrm{s}$ with direction θ relative to x-axis.
(c) The force \vec{F}_{3} cancel the total acceleration. So $\vec{F}_{3}=-m \vec{a}$. $\vec{F}_{2}=(-30,-40) N$.
(d) $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=(0,70)+(30,-30)+(-30,-40)=(0,0)=0$.

