Problem 1 Solution:

(a)

(b) The block m_{1} moves in x-direction:

$$
m_{1} a=F \cos \theta-T-N \mu, \quad N=m_{1} g-F \sin \theta
$$

The block m_{2} moves in y-direction:

$$
m_{2} a=T-m_{2} g
$$

Put in the values of m_{1}, m_{2}, F, and μ, we obtain

$$
\begin{aligned}
3 M a & =4 M g \frac{4}{5}-T-\frac{1}{3}\left(3 M g-\frac{12 M g}{5}\right) \\
M a & =T-M g
\end{aligned}
$$

Add the above two equation together

$$
4 M a=2 M g
$$

We find $a=\frac{1}{2} g$.
For block $m_{1}: \vec{a}$ points to the right and $|\vec{a}|=a$
For block $m_{2}: \vec{a}$ points up and $|\vec{a}|=a$
(c) $T=M a+M g=M g \frac{3}{2}$

Problem 2 Solution:
(a)

(b) Distance between the ball and the $\operatorname{rod} r=\sqrt{5^{2}-4^{2}} L=3 L$.

Speed of the ball $v=\frac{2 \pi r}{T}=\frac{6 \pi L}{T}$.
(c) The acceleration \vec{a} points to the left.

Its magnitude is $|\vec{a}|=\frac{v^{2}}{r}=\frac{12 \pi^{2} L}{T^{2}}$.
(d) The the x - and y-components of the force on the ball from the upper string: $\vec{F}_{1}=$ $\left(-T_{1} \frac{3}{5}, T_{1} \frac{4}{5}\right)$
The the x - and y-components of the force on the ball from the lower string: $\vec{F}_{1}=\left(-T_{2} \frac{3}{5},-T_{2} \frac{4}{5}\right)$
Newtons law for y-direction

$$
0=T_{1} \frac{4}{5}-T_{2} \frac{4}{5}-M g
$$

Newtons law for x-direction

$$
-M|\vec{a}|=-T_{1} \frac{3}{5}-T_{2} \frac{3}{5}
$$

We find

$$
\begin{aligned}
& T_{1}-T_{2}=M g \frac{5}{4} \\
& T_{1}+T_{2}=M|\vec{a}| \frac{5}{3}
\end{aligned}
$$

or

$$
T_{1}=M g \frac{5}{8}+M|\vec{a}| \frac{5}{6}=M g \frac{5}{8}+M \frac{10 \pi^{2} L}{T^{2}}
$$

(e)

$$
T_{2}=-M g \frac{5}{8}+M|\vec{a}| \frac{5}{6}=-M g \frac{5}{8}+M \frac{10 \pi^{2} L}{T^{2}}
$$

Problem 3 Solution:
(a)

(b) Assume the potential energy is zero when the string is unstretched. After we pull the M block by a distance L, the potential energy of the M block is lower by $M g L \sin \theta$, the potential energy of the $M / 2$ block is increased by $\frac{M}{2} g L$, and the potential energy of the spring is increased by $\frac{1}{2} k L^{2}$. So the total potential energy of the system is

$$
U_{1}=-M g L \sin \theta+\frac{M}{2} g L+\frac{1}{2} k L^{2}=\frac{1}{2} k L^{2}
$$

When the M block moves to the position where the spring is unstretched, U_{1} is converted to the kinetic energy $K=\frac{1}{2} M v^{2}+\frac{1}{2} \frac{M}{2} v^{2}=U_{1}$. We find

$$
v=\sqrt{2 \frac{U_{1}}{M+\frac{M}{2}}}=L \sqrt{\frac{2 k}{3 M}}
$$

(c) Let L_{2} be the distance by which the M block moves up the plane from the position where the spring is unstretched. The kinetic energy of the block $M, \frac{1}{2} M v^{2}$, turns into its potential energy $L_{2}=M g \sin \theta$:

$$
M g L \sin \theta=\frac{1}{2} M v^{2}=\frac{1}{2} M \frac{2 k L^{2}}{3 M}
$$

We find

$$
L_{2}=\frac{2 k L^{2}}{3 M g}, \quad \text { or } \quad h=L_{2} \sin \theta=\frac{k L^{2}}{3 M g}
$$

Problem 4 Solution:
(a) c
(b) a
(c) b
(d) e
(e) c

