Want to develop a relationship between the work done and the change in speed of a particle.

Particle moves from P_{1} to P_{2} under the action of a net force \vec{F} (position).

$$
\begin{aligned}
& W=\int_{P_{1}}^{P_{2}} \vec{F} \cdot d \vec{r} \\
& \vec{F}=F_{x} \hat{\imath}+F_{y} \hat{j}+F_{z} \hat{k} \\
& d \vec{r}=d x \hat{i}+d y \bar{j}+d z \hat{k} \\
& W=\int_{P_{1}}^{P_{2}}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)
\end{aligned}
$$

$$
f_{x}=m a_{x}=\frac{m \frac{d v_{x}}{d t}}{}
$$

$$
\int_{P_{1}}^{P_{2}} F_{x} d x=\int_{P_{1}}^{P_{2}} m \frac{d v_{x}}{d t} d x
$$

A particle moves along a curved path from point P 1 to P2, acted on by a force F that varies in magnitude and direction
${ }^{\tau} v_{x}$ is a function of time.
Look at v_{x} as a function of position:

$$
\frac{d v_{x}}{d t}=\frac{d v_{x}}{d x} \cdot\left(\frac{d x}{d t}\right)=\frac{d v_{x}}{d x} \cdot v_{x}=v_{x} \frac{d v_{x}}{d x}
$$

$$
\begin{aligned}
\therefore \int_{P_{1}}^{P_{2}} F_{x} d x & =\int_{P_{1}}^{P_{2}} m \frac{d v_{x}}{d t} d x=\int_{P_{1}}^{P_{2}} m v_{x} \frac{d v_{x}}{d x} d x \\
& =\int_{P_{1}}^{P_{2}} m v_{x} d v_{x}=\left.\frac{1}{2} m v_{x}^{2}\right|_{v_{x 1}} ^{v_{x 2}} \\
& =\frac{1}{2} m\left(v_{x_{2}}^{2}-v_{x_{1}}^{2}\right)
\end{aligned}
$$

$v_{x_{1}}=$ velocity in x-direction at P_{1}
$v_{x_{2}}=$ velocity in x-direction at P_{2}.
Do the same for terms in y and z.

$$
\begin{aligned}
W & =\frac{1}{2} m\left[v_{x_{2}}^{2}+v_{y_{2}}^{2}+v_{z_{2}}^{2}-\left(v_{x_{1}}^{2}+v_{y_{1}}^{2}+v_{z_{1}}^{2}\right)\right] \\
& =\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right) \\
W & =\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
\end{aligned}
$$

Define: $k=\frac{1}{2} m v^{2} \quad \begin{gathered}\text { Kinetic Energy of } \\ \text { Particle }\end{gathered}$

KE: Potential for a particle to do work by virtue of its velocity.

The work done on the particle by the net force equals the change in kinetic energy of the particle.

$$
\begin{aligned}
& W=K_{2}-K_{1} \\
& \text { or } \\
& W=\Delta K \quad \text { Work-Energy Theorem. }
\end{aligned}
$$

For a particle $\vec{p}=m \vec{v}$ (Linear Momentum)

$$
\therefore \quad k=\frac{1}{2 m} P^{2}
$$

Example:

$$
\begin{aligned}
& m=0.50 \mathrm{~kg} . \\
& k=50 \mathrm{~N} / \mathrm{m} \\
& x_{A}=0.50 \mathrm{~m} \\
& x_{B}=0.20 \mathrm{~m} \\
& v_{0}=2.0 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

mass pulled down to x_{A}, released by imparting an upward velocity
? . What is velocity of block at x_{B} ?
Net force on block:

$$
F=F_{g}-F_{s}=m g-k x
$$

work done, integrate $F d x$:

$$
\begin{aligned}
W\left(x_{A} \rightarrow x_{B}\right) & =\int_{x_{A}}^{x_{B}} F d x=\int_{x_{A}}^{x_{B}}(m g-k x) d x=\left.\left(m g x-\frac{1}{2} k x^{2}\right)\right|_{x_{A}} ^{x_{B}} \\
W & =m g\left(x_{B}-x_{A}\right)-\frac{1}{2} k\left(x_{B}^{2}-x_{A}^{2}\right) \\
& =0.5 \times 9.8(0.2-0.5)-\frac{1}{2} \times 50\left(0.2^{2}-0.5^{2}\right) \\
& =-1.47+5.25=3.78 \mathrm{~J}
\end{aligned}
$$

Also

$$
\begin{aligned}
& W=\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2} \\
& \therefore v_{B}^{2}=v_{A}^{2}+\frac{2 W}{m}=\left[(-2.0)^{2}+\frac{2 \times 3.78}{0.5}\right] \Rightarrow v_{B}= \pm 4.37
\end{aligned}
$$

Example
A rock of mass m is tied to the end of a string and whirled in a circular path in the vertical plane.
What is the minimum speed v_{0} that the rock has at the bottom (B) if the rock is to pass the top (A) with the string remaining taut?

- Energy considerations alone not sufficient.
- Need to apply Newton's 2'ND Law.

At the top the minimum speed occurs as tension vanishes, $T \rightarrow 0$.

Net downward force is

$$
F_{g}=m g=m \frac{v_{r}^{2}}{R}
$$

[centripetal acceleration in circular path]

$$
\begin{aligned}
v_{T}^{2}= & g R \\
W(A \rightarrow B)= & m g h=K_{B}-K_{A} \\
& m g(2 R)=\frac{1}{2} m v_{0}^{2}-\frac{1}{2} m v_{T}^{2} \\
v_{0}^{2}= & v_{T}^{2}+4 g R=g R+4 g R=5 g R \\
v_{0} & =\sqrt{5 g R}
\end{aligned}
$$

Example

$$
\begin{aligned}
& h_{A}=7 \mathrm{~m} \\
& h_{B}=4 \mathrm{~m} \\
& h_{C}=7.2 \mathrm{~m} \\
& h_{D}=-1 \mathrm{~m}
\end{aligned}
$$

$v_{A}=3 \mathrm{~m} / \mathrm{s}$ downward and tangent to vamp.

What is speed of particle at $x=x_{B}, x_{C}, x_{D}$?
$\vec{N} \cdot \overrightarrow{d S} \equiv 0$, so work is done only by gravitational force.

$$
\begin{aligned}
W(A \rightarrow B) & =\int_{A}^{B} \vec{F} \cdot d \vec{s}=\int_{A}^{B}(-m g) y \\
W & =m g\left(h_{A}-h_{B}\right)
\end{aligned}
$$

Also $W=K_{2}-K_{1}=\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}$

$$
\begin{aligned}
\therefore v_{B}^{2}=v_{A}^{2}+\frac{2 W}{m} & =v_{A}^{2}+2 g\left(h_{A}-h_{B}\right) \\
& =3^{2}+2 \times 9.8(7-4) \\
& =67.8(\mathrm{~m} / \mathrm{s})^{2} \\
v_{B} & =8.23 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

How far up the ramp will particle go after passing $x=x_{D}$? h_{m} will be reached at x_{m} where $v_{m}=0$.

$$
0=v_{A}^{2}+2 g\left(h_{A}-h_{m}\right) \quad \Rightarrow h_{m}=h_{A}+v_{A}^{2} / 2 g \quad h_{m}=7.46 \mathrm{~m}
$$

Example

Car:

$$
\begin{aligned}
m & =1000 \mathrm{~kg} \\
v_{1} & =20 \mathrm{~m} / \mathrm{s} \\
v_{2} & =30 \mathrm{~m} / \mathrm{s} \\
W & =\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2} \\
& =\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right) \\
& =\frac{1}{2} \times 1000 \times(900-400) \\
& =2.5 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

Gravitational Potential Energy
KE: Represents the capacity of a particle to do work by virtue of its velocity.

PE: Represents the capacity of a particle to do work by virtue of its position in space.
Consider a constant force of gravity

$$
F_{z}=-m g,
$$

acting on as particle which undergoes a displacement from $\left(x_{1} y_{1} z_{1}\right)$ to $\left(x_{2} y_{2} z_{2}\right)$.
The fore does an amount of work;

$$
\begin{aligned}
w_{g r} & =-\left(z_{2}-z_{1}\right)=\int_{z_{1}}^{z_{2}} \vec{F} \cdot d \vec{z} \\
& =-u\left(z_{2}\right)+u\left(z_{1}\right)=-\Delta u
\end{aligned}
$$

where,

is called the gravitational potential energy.

The change in potential energy between the points z_{1} and z_{2} is the negative of the work done by gravity on the particle.

Gravitational Potential Energy:
\Rightarrow capacity of a particle to do work by virtue of its height above the surface of an attracting mass (earth).
If the only force acting is gravity, then using the work-energy theorem,

$$
\begin{gathered}
w_{g r}=k_{2}-K_{1} \\
\text { and } \\
w_{\text {gr }}=-u\left(z_{2}\right)+u\left(z_{1}\right) \\
\therefore K_{1}+u\left(z_{1}\right)=K_{2}+u\left(z_{2}\right)
\end{gathered}
$$

$\therefore K+u(z) \equiv$ constant of the motion.
$E=K+U(z)$: Mechanical Energy.
Represents the total capacity of a particle to do work by virtue of both its velocity and its position.

If only force acting is gravity;

$$
E=K+u(z)=\text { constant }
$$

Law of Conservation of Mechanical Energy

$$
E=\frac{1}{2} m v^{2}+m g z=\text { constant }
$$

z-increases $\longrightarrow v$-decreases
z-decreases $\longrightarrow v$-increases
consider two different positions:

$$
\begin{aligned}
\frac{1}{2} m v_{1}^{2}+m g z_{1} & =\frac{1}{2} m v_{2}^{2}+m g z_{2} \\
v_{1}^{2}+2 g z_{1} & =v_{2}^{2}+2 g z_{2} \\
v_{2}^{2}-v_{1}^{2} & =2 g\left(z_{1}-z_{2}\right) \\
& =-2 g\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Recall constant acceleration kinematics results.

Gravity + other forces
Suppose other forces act besides gravity: friction, etc. Let $W_{\text {other }}$ represent work by all forces anther than gravity.
Total work by all fores equals change in KE.

$$
\begin{aligned}
& W=W_{\text {grav }}+W_{\text {other }}=K_{2}-K_{1}=\Delta K \\
& W_{\text {other }}=\left(m g z_{2}-m g z_{1}\right)=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2} \\
& W_{\text {other }}=\left(\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}\right)+\left(m g z_{2}-m g z_{1}\right) \\
& =\Delta K+\Delta u
\end{aligned}
$$

A change in PE
change in KE.
Also

$$
\begin{aligned}
W_{\text {other }} & =\left(\frac{1}{2} m v_{2}^{2}+m g z_{2}\right)-\left(\frac{1}{2} m v_{1}^{2}+m g z_{1}\right) \\
& =\left(K_{2}+u_{2}\right)-\left(K_{1}+u_{1}\right) \\
& =E_{2}-E_{1}=\Delta E
\end{aligned}
$$

The work done by all other forces acting on the body, with the exception of the gravitational force equals the change in the total mechanical energy of the body.
$W_{\text {other }}>0 \Rightarrow$ Mechanical Energy increases
Mother <0 decreases

Example: hoop-the-Loop
What is the minimum height R (in terms of R) such that an object moves around the loop without falling off the top (B)?

Top of Hoop: velocity: v_{T}

$$
F_{c}=m g+N=\frac{m v_{T}^{2}}{R}
$$

minimum $v_{T} \Rightarrow N \equiv 0$. [contact force vanishes]

$$
\therefore v_{T}=\sqrt{g R}
$$

Represents minimum velocity to make the loop.

Conservation of Energy

$$
\begin{aligned}
m g H+0 & =m g(2 R)+\frac{1}{2} m v_{T}^{2} \\
v_{T}^{2} & =2 g[H-2 R] \\
v_{T} & =\sqrt{2 g(H-2 R)} \quad \text { [Energy Considerations] } \\
\therefore g R & =2 g(H-2 R) \quad \Rightarrow H=\frac{5}{2} R
\end{aligned}
$$

