Partucle sperds up $\}$ veloaty changes
slows droin ψ,
acculation
Acaluation $=$ Rate in change of velocity!
$1-D \equiv \Delta v$; magiutlede
$2 \mathrm{D} / 3 \mathrm{D} \equiv$ mag $\underset{y}{ }$ dinection
Armage: $\bar{a} a_{e v}=\bar{a}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t} \frac{[L]}{\left[T^{2}\right]}=\frac{v(t+\Delta t)-v(t)}{\Delta t} \equiv \begin{aligned} & t_{2} \\ & \text { Slope of line conecting } \\ & \text { poins }\left(v_{1}, t_{1}\right)+\left(v_{2}, t_{2}\right)\end{aligned}$

Example: $v(t)=\frac{1}{2} \beta t^{2}$
What is a ketou t_{1} : and $\frac{t}{2}=3 s$?

$$
\left.\begin{array}{rlrl}
\Delta t: t_{2}-t_{1} & =2 s & a(t) & =\frac{d v}{d t}=\beta t \\
v(t+\Delta t) & =\frac{1}{2} \beta(t+\Delta t)^{2} & & a(1)=\beta \\
& =\frac{1}{2} \beta^{2}+\beta t \Delta t+\frac{1}{2} \beta \Delta t^{2} & & a(3)=3 \beta
\end{array}\right\} \bar{a} \equiv 2 \beta
$$

$$
\bar{\alpha}=\frac{v(t+\Delta \lambda)-v(t)}{\Delta t}=\beta t+\frac{1}{2} \beta \Delta t
$$

Accelenation: Instantaneous

$$
a(t)=\lim _{\Delta t \rightarrow 0} \frac{v(t+\Delta t)-v(t)}{\Delta t}=\frac{d v}{d t}(\text { calcules) } \Delta v)
$$

For Point $P: a(t)=s l o p e)$ tangent hine twigh P.

$$
\bar{a}=\beta(1)+\frac{\beta}{2} 2=2 \beta \mathrm{~m} / \mathrm{s}^{2}
$$

Partucle sauds up $\{$ vebaty danges slows daon $\sqrt{4}$ acculatern
Acaluation $=$ Rate i) change of velocety!
$I-D \equiv \Delta v$; magiutledl
$2 D / 3 D=$ mag x dhection
Arange: \bar{a}

Accelenction: Instontameous

For Pount P: $a(t)=s($ gee $)$ tangent hine though ?

$$
a_{o v v}=\bar{a}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t} \frac{[L]}{\left[T^{3}\right]}=\frac{v(t+\Delta t)-v(t)}{\Delta t} \equiv \begin{aligned}
& \text { slope of line contecting } \\
& \text { primin }\left(v_{1}, 1\right)+\left(v_{2}, t_{2}\right)
\end{aligned}
$$

Solve: $v(t)=v_{0}+a t$
Let partecle be at x_{0} at $t=0$
At teme $t: x(t)=x_{0}+\bar{v} t$
$v(t)$ is a st. live

$$
\therefore \bar{v}=\frac{1}{2}\left[v_{0}+v(t)\right]=\frac{1}{2}\left[v_{0}+v_{0}+a t\right]
$$

$$
\bar{v}=\frac{\pi}{6}+\frac{a t}{2}
$$

Lecture 3, Blackboard \#2

v_{0} Evcloaty at $t=0$ $\left.\begin{array}{l}r>0 \rightarrow+x \\ v<0 \rightarrow-x\end{array}\right\}$ motion
 ded derunative

Cowstant Accoleraters: Seecinl Cave

- Impritant clars y protelems.
$a(t)=a \equiv \operatorname{conotan} t$
$a(t)=\frac{d y}{d t}=a$ (coust.)
$\therefore v(t)=$ st. line
$\bar{a}: a=\frac{v(t)-\bar{v}_{s}}{t-0}$

()
clang in pos.
 dento arculacator.

Examele
Howlang does it take a cari to
tramel 30 m of it acculeraters
from rest at a rate $a=2 \mathrm{~m} / \mathrm{s}^{2}$
$x_{0}=0$ $V_{0}=0$ $a=2 \mathrm{~m} / \mathrm{s}^{2}$
$x=30 \mathrm{~m}$
$t=?$

$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

Accleration gravity : $a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
obycts in Free Fall read earkl's surface Grectes: Auctotle (38t-322)BC
Hawnier ofjets fall parter/PRilosoply
Galleo: (1564-1642)
Very precese seoulto Dey $=1 \times 10^{-10}-1 \times 10^{-12}$ garends ow altetuck

- Expls + Obernentions All sfiects wer orrth acal. at same rate.
laturude and congetue
- coré is not round. - finter radius.

From (1) $t=\frac{v . v_{0}}{\omega}$
Sus m (a) $x(t)-x_{0}=v_{0}\left(\frac{v-v_{0}}{a}\right)+\frac{1}{2} a\left(\frac{v-v_{0}}{a}\right)^{2}$
Solre: \square
We had: $\bar{v}=\frac{x-x_{0}}{t_{-0}}=\frac{v+v_{0}}{2}$

$$
x-x_{0}=\left(\frac{v+v_{0}}{2}\right) t
$$

$x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$\frac{d x}{d t}=v(t)=v_{0}+a t$
$\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=a$
\Downarrow
Calculus

Couot a Problems
$\frac{E Q .}{v=v_{0}+a t}$
$x_{2}-x_{0}=v_{s} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
$x-x_{0}=\frac{1}{2}\left(v_{s}+v\right) t$
$x-x=r t-\frac{1}{2} a t^{2}$

Aale
a, ecmotiont

"Gess"
Acceleration sonctemes measured in
unts of "gces."
$a($ gess $)=\left(\frac{a}{g}\right)$ dimenocionless
$a=a(q u e) g$
i ga $\Rightarrow a=g$
$2 \gamma+3 \Rightarrow a=\lambda g$
Lecture 3, Blackboard \#4

```
Example:
\(\begin{array}{ll}\text { Ball thou upwrend with initial } & \left.\begin{array}{l}y_{0}=25 \mathrm{~m} / \mathrm{s} \\ a=-g\end{array}\right\} t=0\end{array}\)
velocity if \(25 \mathrm{~m} / \mathrm{s}\).
\(a=-g\)
a) Howllong to reach max. freight?
b) How lush does it as?
\(y(t)=v_{0} t-\frac{1}{2} g t^{2}\)
\(v(t)=v_{0}-g t\)
What defines max. height?
At \(t=T ; v(T) \equiv 0\)
b) How hugh doe if go?
\(v(T)=0=V_{0}-g T\)
c) What is verouty when if lats gerund?
d) wheat is tome for total tais?
\(T=\frac{v_{0}}{q}=\frac{25 \mathrm{~m} / \mathrm{s}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}=2.55 \mathrm{~s}\)
\(v^{2}-v_{0}^{2}=-2 g\left(y-y_{0}\right)\)
At \(v(r)=0 \quad y(r)=y_{\text {max }}\)
\(0-v_{0}^{2}=-2 g\left(y_{\text {max }}-0\right)\)
\(y_{\max }=\frac{v_{0}^{2}}{2 q}=\frac{(25)^{2}}{2 \times 9.81}=31.9 \mathrm{~m}\).
```

When ball returns: $y=0$
$v^{2} \cdot v_{0}^{2}=-2 q(y-0)$

$v=v_{0}$
$v: \pm 25 \mathrm{~m} / \mathrm{s}$

```
\[
\begin{aligned}
& y=0+v_{0} t-\frac{1}{2} g t^{2} \\
& 0=v_{0} t \cdot \frac{1}{2} g t^{2} \quad(y=0 \text { onrectiven) } \\
& \text { Sore } t=0 \quad(\text { start) } \\
& \text { and } t=\frac{2 v_{0}}{g}=2 T
\end{aligned}
\]
```


Example:

Ball thooun upward with initial indocity, $)^{25} \mathrm{~m} / \mathrm{s}$
a) Howl long to reach max. height?
b) How lu sh dree it go?

$$
y(t)=v_{0} t-\frac{1}{2} g t^{2} \quad v(T)=0=v_{0}-g T
$$

c) what is velouty when if hits gated? wit) $=v_{0}$-gt

$$
\left.\begin{array}{l}
y_{0}=0 \\
v_{0}=25 \mathrm{~m} / \mathrm{s} \\
a=-g
\end{array}\right\} t=0 \quad \begin{aligned}
& \text { What defines max. height? } \\
& A t \quad t=T ; v(T) \equiv 0
\end{aligned}
$$

d) What is teri fort toto twos?

$$
\begin{aligned}
& M=206 \mathrm{~g} \quad \\
& m=10 g \quad v_{1}=\frac{10 \mathrm{~cm}}{T_{1}} \\
& v_{2}=\frac{10 \mathrm{~cm}}{T_{2}} \\
& a_{\text {exp }}=\frac{\Delta v}{\Delta T}=\frac{v_{2}-v_{1}}{\Delta T}=
\end{aligned}
$$

$$
=981 \frac{10}{206+10}=45.4 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}
$$

Fores

