

Neuten's :Thue hous of motion
I'st Law. No Frnces
2'd + 3'nd: Borly + Faces Acting Goliles: Stated Modern Mechanuios Fre Falleng Objects: $\vec{a}=$ coustant a. Indepandent of weight

Newton: (1642-1727)
"Primexpia Matlematica" Newtor. Mechanvico
. Laws of Motion Law of Unevercal Gnavitation - mented calculus - unde light \rightarrow colom

vr Sped of Light Contact Foues
Thery of felaternty: Eustem (700 ${ }^{+}$)
Ginity:

- Alwerp athactive
- Acts Afurew macoes
- Wrealect in nature
- Erchange patide: grastion.

Neurton's Laws: Aproxunate

1) Atome, Nuche, Fund Pautides "2uantum Truory" (1920+1)
i1) Motion at High Veloutues vir Sped of hight
Theren of 在位tenty: Ematem (700^{+})

Forces

- Some thing exerting a push ©o a puill
- Vector quantity $\frac{\text { (macinturde }}{\text { divlolems })}+$

Contact Fores
Spring Rudita Bods Cables iopm Hizuids Gasea
M) Elateomagratic

- Acbo latwere chary! bolues
- Athadruve oo Peypulave
- Exapt fa gravity, all madancype taceb are em
- Exding pautids plater
- Accibertery chager radiute plutore.

Actron-at-a-Distance
Granity: $8.011 / \pi^{2}$
Electumengatic: $8.021 / \mathrm{r}^{2}$
Fundamantal Forces un Natiue (4-kends)
Gentry: - Alwery athactuve

- Acks iturew masces
- Wealisot in nature
- Exchange padide: grastor. Mackide ougin?
\qquad
iv Weal Force
- Bitwren slement any Pacticles
- Neutuon Decay. $n \rightarrow p+e^{-}+\tau$ $p-$ decay $\sim 1000 s$
Exchang Patedes $\mathrm{lu}^{+}, z_{i}^{0},(290 \mathrm{GeV})$

Stury Force Electumynatic Weak Foce Gravitational Ae strength 2.protmo 10^{-15} Plapat

Refernce trames
Law valid only in Ireatial Frames
Ball on around
No wet forces
Proats on Thain: $a_{B}^{\prime} \neq 0$? $a_{b}^{\prime}=$

 Test: Fure Bady (H_{0} Focen)

94:0
If unifam Mstion $(\vec{V}=\operatorname{cosen}) \Rightarrow$ Inctial inf Trame Refraceso in anforn tramolatriou aloo IRF!! le
fitue Bedy (No Foren)

Neaton's znd Law: $\bar{F}: ~ m \vec{a}$
Froce \rightarrow acaleration of a wass
"Thechangr in moteon (acel) is proportional
to do motive force impreoced, and vo made
in the direction is the st line in which
the force is in prisoed".
(4)
'

$-$

$F=m a$
$[\mathrm{N}]=[\mathrm{kg}]\left[\frac{\mathrm{m}}{\mathrm{s}^{2}}\right]$ henotons
$m=1 k_{g} \Rightarrow F=1 \mathrm{~N}$
$a=\operatorname{lm} / \mathrm{s}^{2}$
$\stackrel{m}{F}$
$\begin{aligned} & \longrightarrow \vec{a} \\ & \vec{v} \\ & m \vec{F} \\ & \longrightarrow \vec{a}\end{aligned}$
$\vec{F}=m \vec{a}$ (Vector Equatom)

Defenctum of Moos
-standard mass: $m_{s}=1 \mathrm{hg}$
-Compare by batanang
$m 0 \uparrow \bigcirc m_{s}$

- Not good if $g=0$ (spare)
- Le common ford and

Newton's aid Law
Inertial Frame
$m_{s,}, a_{s}$ stud Mass
$m, ~ a ~ u n k n o w n ~$
$F=m a \quad F=m_{s} a_{5}$

$$
\begin{aligned}
& \quad \frac{m}{m_{s}}=\frac{a}{a_{s}} \\
& \text { Mass. Renstance of body to } \\
& \text { change on veloat, } \rightarrow \text { Imatia. } \\
& \text { Lager } \rightarrow \text { Sind } \dot{a}^{-1} \quad M=M_{1}+M_{2} \in \text { Exp. }
\end{aligned}
$$

Example:
Mos $(0.2 \mathrm{~kg})$ slides along table.

$$
F_{x}=m a_{x}
$$

Initial $v=2.8 \mathrm{~m} / \mathrm{s}$. Stores in 1.0 m
What free is acting?

$$
a_{x}=\frac{F_{x}}{m}=\frac{20}{4}=5 m / s^{2}
$$

$$
\overrightarrow{\vec{j}}=m \vec{a}
$$

$$
\begin{aligned}
& v_{c}^{2}=v_{0}^{2}+2 a_{x}\left(x-x_{0}\right) \\
& a_{x}=\frac{v_{5}^{2}-r_{0}^{2}}{x_{-1}-x_{1}}=\frac{0-28^{2}}{1.0^{2}}=-3.9 \mathrm{~m} / \mathrm{z}
\end{aligned}
$$

$$
f: \max _{\mathrm{a}}
$$

$$
=0.2 x-3.9
$$

$$
=-0.78 \mathrm{~N}
$$

Defenctum of Moos

- Stamdard mass: $m_{5}=1 \mathrm{hg}$
-Comprase by batanang
$m 0$ § ms_{s}
- Not good if $g=0$ (spac)
- Hee conmon fores and

Nocutoris 2ind Law
Itential Frame
$m_{s,}, a_{s}$ stud Mass
$m, ~ a ~ u n k n o w n ~$
$F=m a \quad F=m_{s} a_{s}$
same.

$$
\begin{aligned}
& \quad \frac{m}{m_{s}}=\frac{a}{a_{s}} \\
& \text { Mass. Renstance of body to } \\
& \text { change on veloat } \leftrightarrow \text { Imatia. } \\
& \text { Lagen } \rightarrow \text { Sind } \dot{a}^{-1} \quad M=M_{1}+M_{2} \in \text { Exp. }
\end{aligned}
$$

Example:
Maos $(0.2 \mathrm{~kg})$ slides along talle.
Initial $v=2.8 \mathrm{~m} / \mathrm{s}$. Stopes in 1.0 m
$F_{x}=m a_{x}$

$$
a_{x}=\frac{F_{x}}{m}=\frac{20}{4}=5 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \text { What free is acteng? } v=2.8 \mathrm{~m} \text {. Stos } 1.0 \mathrm{~m} \text {. } \\
& \vec{j}=m \vec{a}
\end{aligned}
$$

$$
F=20 \mathrm{~N}
$$

$$
v_{5}^{2}=v_{0}^{2}+2 a_{x}\left(x-x_{0}\right)
$$

$$
a_{x}=\frac{v_{9}^{2}-x_{0}^{2}}{x-x_{1}}=\frac{0-28^{2}}{1.0^{2}}=-3.9 \mathrm{~m} / \mathrm{z}
$$

$$
f=\max _{x}
$$

$$
=0.2 x-3.9
$$

$$
=-0.78 \mathrm{~N}
$$

- Vector quantitr (magnitude +

