Nowilon's 3/nd Law

- Focers un noture alurayp act in parios
- No smple coolated force.
"To envery acters. there is an equal and opposite reacteser
TRemerl acterns of two bodees unw on

anomp equal, and dhected to onthang parte.
Turo trow in Acturu \rightarrow Reaction art ondpoont boden!
 $\vec{F}_{A B}=-\vec{F}_{P A}$ Atern-Reaction Body acelnated arby by fove acting on ct! $a_{B}=\frac{\vec{F}_{B A}}{M_{A}} \quad a_{A}=\frac{\overrightarrow{F A B}_{A}}{M_{A}}$

Example
$M_{A}=1 \mathrm{~kg}$
$m_{B}=2 k g$
3
$\mathrm{F}=2 \mathrm{~N}$
$\xrightarrow{\stackrel{\uparrow y}{y} x} x$
$\vec{F} \vec{F}$

$\vec{a}: ? F_{A B}=?$

$$
\begin{aligned}
& \left|F_{A A}\right|=\left|F_{B A}\right| \text { Nentrn's 3kILaw } \\
& \therefore F=\left(m_{A}+m_{B}\right) \text { au } \\
& a=\frac{F}{m_{A}+m_{B}}=\frac{2}{1+2}=2 / 3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Custact Foves:

$$
\begin{aligned}
F_{B H}=m_{B} a_{B} & =m_{B} a \\
& =2 \times 2 / 3-4 / 3 \neq F
\end{aligned}
$$

Gnavitatuenal Frice
Nontin: Evy pase X partichos excito on ane anocher a nuectual gravitational face of attractoon. Fore prop to nacoes and wirrialey prop to sprous I destance bituren then.

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

$$
G=6.673 \times 10^{-11} \mathrm{~N}^{2} \mathrm{~m}^{2} / \mathrm{c}^{2}
$$

IN^{N} Fg

Coyct: $\vec{N}+\vec{F}_{9}=0$

$$
\begin{aligned}
& \vec{N}=-\overrightarrow{F g} \\
& \text { Earlf: } \\
& \text { Eath } \\
& F_{g}=m\left(\frac{M E G}{R_{E}^{2}}\right)=m g \\
& \text { Eark } \\
& M_{E}=\frac{g P_{E}^{2}}{G} \Rightarrow \text { Waighong the }
\end{aligned}
$$

Obyct on Earth Caverdesh Expt. (Noremben)

Weight: Coxtact force $\vec{\omega}$ that an ofyct exerto on
whateres is supporting it. whaterer is supposting it. $\left.\begin{array}{l}\vec{F} \text { acts on ofyct } \\ \vec{\omega} \text { acto on eartR }\end{array}\right\} \vec{\omega}=\overrightarrow{m g}$

Q. Jo all ofyryto fill due to querety
with same ' a ?

$$
\frac{M_{E}(1)}{M_{G}(t)}=\frac{M_{I}(z)}{M_{G}(2)} \times \frac{G(t)}{a(t)}
$$

Expt: $a(z) / a(t)=$ constat.

$$
\begin{aligned}
& \text { bacty 2: } m_{I}(t) a(z) \quad R^{R^{2}}=g m_{G}(z)
\end{aligned}
$$

Gacluo/E otros/rde: 1×10^{-172}
Ratio: $\frac{M_{z}}{M_{G}}=1$ fac cloces of G.
Newtowen Thray: $H_{I} M_{G}$ nut Neadd

Lecture 9, Blackboard \#4

