Muture wirl a Countant Force Example $\vec{F}=m \vec{a} \quad$ (2-nd Law)

If $\vec{F}=$ coustant,
Plon $\vec{a}=$ conotant
$\Sigma F_{x}=m a_{x}$
$\sum F_{y}=m a_{y}$
$\sum F_{z}=m a_{z}$
y-axio
$N-m g=m a_{y} \equiv 0$
$N=m g$
x-axces
$F=m a_{x} \Rightarrow a_{x}=\frac{F}{m}$

Problem Sohring Recige

1. Draw a diagram showing key fectueres of pretlem
2. Haw ane ce more free. bod dianames prethem Fo each obiet show frous a aragnems for the offects include intannal ferces. Do why on il only. So not erouts onv forces Do not moncurse farces it exerts on otter bodies.
3. Chove a coodd oystem. If \vec{a} is lannase choose that

Ditarmene force components along axus. Example. 4 hook for gromectrical constraints. unte an rquation for constraent. s. Write $\vec{F}=$ m \vec{a} fuead body

- Reck special cares, units, sigus and

$$
\begin{aligned}
& \text { Body } m_{2}: F-T_{2}=M_{2} a_{2} \text { (1) } x \text {-axis } \\
& N_{2}-m_{2} g=0 \text { (2) } y \text {-axis }
\end{aligned}
$$

Body $m_{1}: T_{1}=m_{1} a_{1}$ (3) x-axis

Bockes move togethen conotreent

$$
a_{1}=a_{2}
$$

Ideal shing: No mass
$\vec{T}_{1}=-\vec{T}_{2}=T$
(1) +(2) $F=\left(m_{1}+m_{2}\right) a$
$a=\frac{F}{m_{1}+m_{2}} \quad T=m_{1} a=\frac{m_{1}}{m_{1}+m_{2}} F$

Dithmene force components along axeo. Example.
heok for aromethucal condrein
4 hook for gromitrical corsinaintts.
Winte an repetien for constraent.
5. Winte $\vec{F}=m \vec{a}$ fre ead body.
b. Sifice it's
7. quek apecial capoo, units, sigis and

Body m_{2} :

$$
F-T_{2}=m_{2} a_{2}
$$

$$
N_{2}-m_{2} q=0
$$ omprae weih expectationo.

Bost m_{1} :

$$
T_{1}=m_{1} a_{1}
$$

$$
N_{1}-m_{1} g=0
$$

(1) x-axis
(2) y-axis
(3) x-asis
(4) y-avio

Bodes move togethen conctraent

$$
a_{1}=a_{2}
$$

Idelshing. No mass

$$
\vec{T}_{1}=-T_{2}=T
$$

$$
\text { (1) +(3) } F=\left(m_{1}+m_{2}\right) a
$$

$$
a=\frac{F}{m_{1}+m_{2}} \quad T=m_{1} a=\frac{m_{1}}{m_{1}+m_{2}} F
$$

Ideal Pallup/Prep

- chang durctuon of force suated by string if
If stimen and pulliy masoles $\frac{v}{T}$ manitudi i 1 same of both ons.
Idial puith macsleas N_{5} frietron.

Block+ Pally
Pully: $\begin{aligned} & T-2 F=0 \\ & T=2 F \quad[\text { mkch.Adtamiage 2x] }\end{aligned}$

Mass m: $\begin{aligned} T & =m a \quad N-m g=0 \\ 2 F & =m a\end{aligned}$
$2 F=m a$
$a=\frac{2 F}{m} \quad F=\frac{m a}{2}=\frac{300 \times .05}{2}$
$=7.5 \mathrm{~N}$

Eamele

- Fictionkas
- Misollos pally
- Macoles Strang

Mass $m_{1} T_{1}=m_{1} a_{1}$ (1)
$N_{i}-m_{i} g=0 \quad$ (a)
Hass $n_{2}: H_{2} g-T_{2}=N_{2} a_{2}$ (3)

Pully: $2 T_{1}-T_{2}=0$ (4)
Constrawnt: Wlem mi more destance X_{1}
m_{2} mexe dulance x_{2}

$$
x_{2}=\frac{1}{2} x_{1} \Rightarrow a_{2}=\frac{1}{2} a_{1} \quad \frac{d^{2} x}{d t^{2}}=\frac{1}{2} \frac{d^{2} x_{1}}{d t^{2}}
$$

Solve: $a_{2}=\left(\frac{m_{2}}{4 m_{1}+m_{2}}\right) g$ $a_{1}=2 a_{2}$
Stringo/Ideal/Mas?

- Nersoon maly
- No puch or compresston (rod)

If nasclico; temcern the sanv everyafles.
No strutclung.

- Alaup aligns with frece.

Tred togiluen: Common as.
$T_{2}=m_{2} a$
$T_{1} \neq T_{2}$ Strang has moxs. If $m_{s}=0 \quad T_{1}=T_{2}$!! How dors terosin change aling the string?

Stringe / Ideal/Mass?

- Tevsion only
- No pual or comprussion (rod)

If moseleo, tenown the Same everywhere.
No stretclung
Ahump alyngs with force.

Teed togithen: common as.
$T_{2}=m_{2} a$
Maos $m_{1}: F-T_{1}=m_{1} a$
Maos $m_{2}: T_{2}=m_{2} a$
String: $T_{1}-T_{2}=m_{5} a$
(1) + (2) + (3) $\quad F=\left(m_{1}+m_{2}+m_{5}\right) a_{0}$
$T_{1}=F-m_{1} a=\left(n_{2}+m_{5}\right) a$
How does tenscin chang along the string?
T_{l} : Teveren at location l
l : longeh from LHS .

$T_{1}-T_{l}=\left(\frac{L-l}{L}\right) n_{s}, a_{s}$
$T_{l} \cdot T_{2}=\frac{l}{L} m_{s} a$
Sub. for a

If $m_{5} \ll m_{1}$ $\mathrm{M}_{3} \ll M_{2}$
$l=L \quad I_{l}=T_{2}+m_{5} a=T_{1}$
$l=0 \quad T_{l}=T_{2}$

Example-Incluned Plane

- No frictian
- Granity only
$m g \sin \theta=m a$ $a=g \sin \theta$
$N-m g \cos \theta=0$ $N=m y \cos \theta$

Exompl Acalerated Inclurvad Plane

- Block un frictiosless plane
- brdere accalinated 'a' to ught

Q What in angle θ ouch that
block dro not slip up a dran?

Block does not slyp if its acalenation
 Faces alimy $N \cos \theta-n g=0 \Theta$

$\begin{array}{ll}m_{1}=550 \mathrm{~g} \\ m_{2}=5 \log & a_{\text {mpp }}=\frac{2 s}{t^{2}}=2 \times 1 \mathrm{~m} \\ =\frac{1}{2} a t^{2} & a_{\text {Thly }}=\end{array}$

$$
\text { Fanc(} N=\frac{m q}{\cos \theta} \quad \text { If } \theta=0 \quad a=0
$$

Fud togios. Comvisi ac.

$$
\vec{r}_{2}=m_{2} a
$$

$\underset{\left[m_{1}\right]}{\substack{m_{1}}} \rightarrow F$
$\rightarrow F$

$$
\text { Nose } m_{1}: F-T_{1}=m_{1} a
$$

$$
\begin{aligned}
(1+(2)+(3) & F=\left(m_{1}+m_{2}+m_{5}\right) a \\
T_{1} & =F-m_{1} a=\left(m_{2}+m_{5}\right) a
\end{aligned}
$$

a

- No friction - Ganirta onler.

$$
\begin{array}{r}
m g \sin \theta=m a \\
a=g \sin \theta
\end{array}
$$

$N-M \lg \cos \theta=0$ $N=m p \cos \theta$

