
$\left.\begin{array}{l}\text { Example } \\ \text { Pall sweng to side werh fore } \vec{P} \text {. } \\ \text { Slowey: } k E=0 \\ P=T \sin \theta \\ \omega=T \cos \theta\end{array}\right\} P=\omega \tan \theta=m g \tan \theta \quad$.

$$
\begin{aligned}
& W=\int_{0}^{a} \vec{P} \cdot d \vec{l}=\int_{0}^{a} \cos \theta d l \\
& d l=R d \theta=a r \operatorname{los} g h \\
& W=\int_{0}^{a} R \cos \tan \theta \cos \theta d \theta \\
&=\omega R \int_{0}^{a} \sin \theta d \theta \\
&=\omega R\left(1-\cos \theta_{0}\right)
\end{aligned}
$$

$W_{\text {cheu }}=W_{T}+W_{P}=\Delta K+\Delta V=\Delta E \quad 0$ $W_{T}=0 \quad T \perp$ droplacimunt
$\Delta k=0 \quad$ Sureng mater slowly
$\omega_{p}=\Delta U=\omega \Delta u$
$\Delta y=R(1-\cos \theta)$
$W_{p}=\omega R(1-\cos \theta)$

Inama in lkisht

$$
\begin{align*}
& \text { Block on Indime } \quad f=\mu \mathrm{N} \\
& \text { - More a dintance D } \quad N=m q \cos \theta \tag{3}\\
& \begin{array}{l}
v=0 \text { at } t=0 \\
\text { Fund } v \text { at end }
\end{array} \\
& H_{i}=\int t \cdot d \vec{s}=-\mu N D=-\mu m g D \cos \theta \\
& W_{g}=(-m g \sin \theta) D \\
& W_{N_{t}}=W_{g}+W_{F}+W_{f} \\
& \begin{aligned}
& =-m g D \sin \theta+F D-\mu m g D \cos \theta \\
& =\frac{1}{2} m v^{2} \quad K_{i}=0
\end{aligned} \\
& \begin{array}{l}
K_{f}-K_{l}=W_{\text {Nef }} \\
\frac{1}{2} m v^{2}-0=F D-m g D(\sin \theta+\mu \cos \theta)
\end{array} \\
& v=\sqrt{\frac{2 F D}{m}-2 g D(\sin \theta+\mu \cos \theta)} \\
& \text { If }\left[\frac{2 D}{m}-2 g D(\sin \theta+\mu \cos \theta)\right]=0 \\
& \text { If }[]<0 \text { ?? } \quad \Rightarrow \tau=0 \\
& W_{F}=\int \vec{F} \vec{A}=F D \\
& K_{p}=\frac{1}{2} n v^{2} \quad K_{i}=0 \\
& \text { If }\left[\frac{2 P-2 g D(\sin \theta+\mu \cos \theta)}{m}\right]=0 \\
& \text { If }[]<0 ? ? \text { ? } \Rightarrow v=0
\end{align*}
$$

Piential Energy) Conaervateve Forces

$$
\text { Let } P_{0}=\text { Pefeince Point }
$$

$$
\Delta u=u\left(P_{2}\right)-u\left(P_{1}\right)=-\int_{P_{1}}^{P_{R}} \vec{F} \cdot d \vec{r}
$$

$$
\begin{aligned}
& U(B)=P_{0 f} \text {. Enengy if Piperence Pount } \\
& P=G_{\text {oneral Point }}
\end{aligned}
$$

$$
U(P)=-\int_{P_{0}}^{P} \vec{F} \cdot \vec{n}+U\left(P_{P}\right)
$$

$$
\Delta u \Rightarrow \text { Neature } I \text { wolk done by the force }
$$

$$
\begin{align*}
& u\left(P_{2}\right)-u\left(P_{1}\right)=-\int_{P_{0}}^{L_{2}} \vec{P} \cdot \overrightarrow{\vec{n}}+u\left(P_{P}\right)-\left[-\int_{P_{n}}^{4} \vec{F} \cdot \vec{a}+u\left(P_{2}\right)\right] \tag{8}\\
& =-\int_{B_{B}}^{P_{2}} \vec{F} \cdot d \vec{\pi}-\int_{P_{1}}^{P_{0}} \vec{F} \cdot d \vec{R} \\
& \text { U(P): Drops Out!! } \\
& \text { Chase } U\left(P_{0}\right)=0 \text { ! }
\end{align*}
$$

