Centen- $9-$ Maon
Particleo: $\overrightarrow{r_{c m}}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}+}{m_{1}+m_{2}+\cdots}$.
Soled Duget $\overrightarrow{r_{c a}}=\frac{1}{M} \int \rho \vec{r} d v$
$x_{\mathrm{cm}}=\frac{1}{M} \int \rho x d v$
$y \mathrm{~cm}, t_{\mathrm{cm}}$: Same

Ancad/Plates
$\sigma(x, y)$: Areal Derwity
$d m_{i}=\sigma d a_{i}$
$\left.x_{c m}=\frac{1}{M} \int \sigma x d a\right\}$ Ist Moments
$\left.y_{o x}=\frac{1}{M} \int \sigma y d a\right\}$ If Area.

Example Reght Cercular Core
By aymmetry: $x_{\mathrm{cm}}=0 ; y_{\mathrm{cm}}=0$ Cone centered on z-axis.
Cat out dises: Prickness dz $d m=\rho d v=\rho 2 \pi r^{2} d z$
r:radius of disc at loc. z $\mathrm{S}=$ unifiom devarity.

Gemety $\frac{r}{R}=\frac{z}{H} \quad: \quad:=\frac{R}{H}$
$z_{C M}=\frac{1}{M} \int^{H} z d m=\frac{1}{M} \int_{z=0}^{H} \int_{z} z \pi r^{2} d z$
$z_{c m}=\frac{1}{M} \int_{0}^{H} \frac{9 \pi R^{2}}{\pi^{2}} z^{z=0} d z$
$z_{\text {em }}=\left.\frac{5 \pi R^{2}}{M H^{2}} \frac{z^{4}}{4}\right|_{0} ^{H}=\frac{S \pi R^{2} H^{2}}{4 n}=\frac{3}{4} H \Rightarrow \frac{H}{4}$ Fum $_{\text {Buse }}!$

Two Objacts : Disk NoHde Hold. Meg Mliss.

$$
\begin{aligned}
\left.x_{\text {Cw }}\right|_{\text {Hol }} & =\frac{\left(\pi R^{2} \sigma\right)(0)-\left(\pi r^{2} \sigma\right)(-2 a \mathrm{~m})}{\left(\pi R^{2}-\pi r^{2}\right) \sigma} \\
& =\left(\frac{r^{2}}{R^{2}-r^{2}}\right)(-2 \mathrm{~cm}) \\
& =\frac{6^{2}}{8^{2}-b^{2}}(-2)=2.6 \mathrm{~cm}
\end{aligned}
$$

Asoume $M=\cos s t$.
Asoume $m=\cos s t$.
$\vec{v}_{(\infty)}=\frac{1}{m}\left[m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+\cdots \overrightarrow{m_{n}} \vec{v}_{n}\right]$
$=\vec{P} / M$ Iotal limear Mormentum/Mass $\therefore \vec{P}=M \overrightarrow{V_{c m}}$ botal \vec{P} is th same as of a

$\overrightarrow{a_{c m}}=\frac{d \vec{v}_{m}}{d t}=\frac{1}{m} \sum m_{i} \frac{d \vec{v}}{d t}=\frac{1}{m} \sum m_{i} \overrightarrow{a_{i}}$
$\therefore M \overrightarrow{a_{c m}}=\sum \overrightarrow{F_{c}}$

$$
\vec{F}_{i}=\vec{F}_{i, I N T}+\vec{F}_{i, \text { ext }} \quad \sum \overrightarrow{F_{i, I N T}}=0
$$

$$
\therefore \sum F_{i, E \times T}=M \vec{a}_{c m}=\frac{d \vec{P}}{d t}
$$

$$
\text { If } \overline{\sum F_{i, E \pi}}=0 \quad \frac{d \vec{P}}{d t}: 0 \quad \vec{P}=M a_{o x}=\text { Constrmt }
$$

(3)

Lecture 18, Blackboard \#2

Example Cm Motion
$\vec{\Sigma} \vec{F}_{h+}=M \vec{a}_{c m}$
$\vec{F}+\overrightarrow{M_{1}}+\overrightarrow{M_{2}}+\overrightarrow{\omega_{1}}+\overrightarrow{x_{2}}+\vec{M}_{3}+\overrightarrow{M_{4}}=M \vec{a}_{\mathrm{cm}}$
$12 \hat{2}=6 \overrightarrow{a_{c m}}$
$\overrightarrow{a_{c x}}=2 \hat{i}$
$\vec{a}_{m 1}=2 \hat{l} \quad \vec{a}_{m_{2}}=2 \hat{i}$

 $\overrightarrow{a_{C n}}=\frac{1}{6}[0+4 \times 3 \hat{i}]=2 \hat{i}$
Exactly the same as before !!

Momentum $\overrightarrow{\mathrm{P}}=\mathbb{M} \vec{v}_{\mathrm{cm}}$

$k=\sum_{1} \frac{1}{2} m v_{e}^{2}=\frac{1}{2} m_{1} \Gamma_{1}^{2}+\frac{1}{2} m_{2} V_{2}^{2}+\cdots \frac{1}{3} m_{n} v_{n}^{2}$
$k=\frac{1}{2} m_{1}\left(\vec{u}_{1}+\vec{v}_{c a n}\right)^{2}+\cdots \cdot \frac{1}{2} m_{n}\left(\vec{u}_{n}+\vec{v}_{c a}\right)^{2}$
\vec{u}_{1} : velocity 1 m in m F Frame. $\quad=\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}+\cdots \frac{1}{2} m_{n} x_{n}^{2}$

$+\left(m_{1} \vec{x}_{1}+m_{2} \vec{H}_{n}+\cdots m_{n} \vec{H}_{n}\right) \cdot \overrightarrow{v_{c n}}+$
$+\frac{1}{2}\left(m_{1}+m_{2}+\cdots \cdot m_{n}\right) v_{c m}^{2}$
 Monerum $\overline{\mathrm{P}}=\mathrm{M} \overrightarrow{\mathrm{v}}_{\mathrm{cm}}$
Koutic Evong $K=\frac{1}{2} M v_{c m}^{2} ? ?$
Total k : " $k=\Sigma K_{i}$

$\sqrt{1}$: velocty in Lab Framo.
$\pi_{\text {col }}$ velatiti $f \mathrm{~cm}$ rel to Lab F.
$k=\frac{1}{2} m_{1}\left(\vec{u}_{1}+\vec{v}_{c_{*}}\right)^{2}+$
$=\frac{1}{2} m_{1} a_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}+\cdots \hat{y}_{2}^{2} m_{n} x_{n}^{2}$
$+\left(m_{1} \overrightarrow{x_{1}}+m_{2} \vec{F}_{a_{a}}+\cdots m_{m_{n}} \vec{H}_{m}\right) \cdot \overrightarrow{v_{c n}}+$
$+\frac{1}{2}\left(m_{1}+m_{2}+\right.$

Fuot Term: TI
Seend Term T2
$K_{\text {INT }}=\frac{1}{2} m_{1} x_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}+\ldots \frac{1}{2} m_{r} u_{n}^{2}$
\Rightarrow Itrumal Kunctic Enengy.
$\left[m \cdot \vec{x}_{1}+\cdots\right] \cdot \vec{x}_{c m}=\left[m_{1}\left(\vec{v}_{1}-\vec{v}_{c m}\right)+m_{2}\left(\overrightarrow{g_{2}}-\vec{v}_{c m}\right)+\right.$

- Potatione
- Heat.

TMudTom: T3

$$
=\left[M \overrightarrow{v_{c a}}-M \vec{v}_{c x}\right] \cdot \overrightarrow{v_{c n}} \equiv 0 .
$$

Summary:

$$
\begin{aligned}
& k=K_{\text {INT }}+\frac{1}{2} m v_{c m}^{2} \\
& <_{\text {InHE }} k e^{\prime} \rho \mathrm{cm}
\end{aligned}
$$

]. $\vec{\rightharpoonup}_{0}$
Potenteal Every / Cm :
$u=$ Function of pesition of all tho putchos.
Total $E=$ Tutal $K+$ Total u
Gravitationap PE-Extonded Brdy $u=\left(m_{1} z_{1}+m_{2} z_{2}+\cdots m_{n} z_{n}\right) g$
$=M z_{\mathrm{cmg}}$ Btanes hle maco M at cm .

Podids/Vaualle Mass Protlemos
$\overrightarrow{F_{e x y}}=\frac{d \vec{P}}{d t}=\frac{d(M \overrightarrow{\mathrm{k}})}{d t} E_{f} f^{m o t i m}$
What hatrims uhen maos M vaves
with time
Focket prodeld fowind by a ction of
ejecluon iqases \Rightarrow acciluater,
ejecrioniqqases \rightarrow accilenaters!
Nocket mues dravaces with time: $\frac{d x}{d t}<0$

$$
\begin{aligned}
& \vec{v} \uparrow \hat{A}-\vec{v}+\overrightarrow{d v} \quad \text { Rocke } M_{\text {css }}=M(t)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\vec{p}: \vec{P}_{f}-\overrightarrow{P_{+}}=\vec{v}+m \Delta \vec{v}-\Delta m \vec{v}-\Delta m\right) \Delta \vec{v} \\
& +\vec{x} \Delta m-\mu \vec{N} \\
& \overrightarrow{\Delta \vec{P}}=M \overrightarrow{\Delta r}+(\vec{u} \cdot \vec{v}) \Delta m \\
& \Delta m=-\Delta M \text { het } \Delta t \rightarrow 0 \\
& \vec{F}_{u t}=\frac{d \vec{p}}{d t}=M \frac{d \vec{t}}{d t}-(\vec{u}-\vec{v}) \frac{d M}{d t} \\
& \left.M \frac{d \vec{t}}{d t}=\vec{F}_{\text {oxt }}+\vec{v}_{\pi} \frac{d M}{d t}\right) \text { Rocht Eq. Motion }
\end{aligned}
$$

$\vec{n}_{n}^{2}=\vec{u} \cdot \vec{v}:$ rel vel f Δm cort Rockif
$M \frac{d \overrightarrow{d r}}{d t}=M a_{R}$ Aocl \cap Rocket.
Fext: Ext Fore, granty, an redist
$\vec{n} \frac{d u}{d t}=$ Properaior Frice /Rochet Thuest.

$v_{r}<0 \mathrm{Ral}$ to rochest.
$\frac{d m}{d t}<0$ Mass decerases
$d \vec{v}=\frac{F_{e x}}{m} d t+v_{r} \frac{d u}{M}$
Aroume $F_{\text {xht }}=-M g \quad(g=$ corse $)$

$\vec{u}_{n}=\vec{u} \cdot \vec{v}$, rel vel of Am wart Rochf $\mathrm{M} \frac{\mathrm{dt}}{\mathrm{dt}}=\mathrm{m} a_{R}$ (Acol f Rocket.
Fest : Ext Foce, gantry, aur resist $\overrightarrow{T_{n}} \frac{d y}{d t}=$ Poppulare $T_{\text {mase }} /$ Rochit Thunt. Rate ftrmofer of \vec{P} mat of rocket
$N_{1 r}<0 \mathrm{Rel}$ to rocket.

$$
\frac{d a}{d t}<0 \text { Mass deciecises. }
$$

$$
d \vec{v}=\frac{F_{\mu}}{m} d t+v_{r} \frac{d u}{M}
$$

$$
\text { Arsoume } F_{\text {ntt }}=-M g \quad(g=\text { conc })
$$

1teqat: $\int_{v_{0}}^{v} d v^{\prime}=-\int_{0}^{t} g d t^{\prime}+v_{r} \int_{M_{0}}^{M} \frac{d M^{\prime}}{M^{\prime}}$
$v: v_{0}-g t+v_{\pi} \ln \frac{M(t)}{M_{0}}$
$N_{0}=$ initial vecity
$M(t)=$ mases at time t.
$v_{n}=$ exfrowst velocity tul. to rescht
$\left(\mathrm{N}_{3}-M\right)=$ anseont if forl uard.

$$
\begin{array}{ccc}
\text { Uonally gt small } & M(t) / M_{0} & \ln \left(M(t) / M_{0}\right) \\
\text { Acsumn } V_{0}=0 & 1 / 2 & -0.69 \\
v=V_{H r} \ln \frac{M(t)}{M_{0}} & 1 / 10 & -2.30 \\
& 1 / 20 & -3.00 \\
& 1 / 100 & -4.61
\end{array}
$$

