
Module 24: Angular Momentum of a Point Particle 
 
24.1 Introduction 
 
When we consider a system of objects, we have shown that the total external force, acting at the 
center of mass of the system, is equal to the time derivative of the total momentum of the system,  
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We now introduce the rotational analog of this Equation (24.1.1). We will first introduce the 
concept of angular momentum for a point particle of mass m  with linear momentum p!  about a 
point S , defined by the equation 
 
 S S= !L r p

! ! ! . (24.1.2) 
 
where Sr

!  is the vector from the point S  to the point particle. We will show in this chapter that 
the total torque about the point S  acting on the particle is equal to the rate of change of the 
angular momentum about the point S  of the particle, 
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Equation (24.1.3) generalizes to any body undergoing rotation.  
 
We shall concern ourselves first with the special case of rigid body undergoing fixed axis 
rotation about the z-axis with angular velocity    

!
! = !k̂ . We divide up the rigid body into N  

elements labeled by the index i , 1,2,i N= … , the thi  element having mass im  and position 
vector ,S ir

! . The rigid body has a moment of inertia SI  about some point S  on the fixed axis, 
(often taken to be the z-axis, but not always) which rotates with angular velocity !  about this 
axis. The total angular momentum is then the vector sum of the individual angular momenta,  
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When the rotation axis is the z-axis the z-component of the total angular momentum about the 
point S  is then given by  
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We shall show that torque is then the time derivative of the angular momentum, which we can 
show by differentiation. 
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24.2 Angular Momentum and Torque 
 
Angular Momentum for a Point Particle 
 
Consider a point particle of mass m  moving with a velocity v!  (Figure 24.1).  
 

 
 

Figure 24.1 A point particle and its angular momentum. 
 
The linear momentum of the particle is m=p v! ! . Consider a point S  located anywhere in space. 
Let Sr
!  denote the vector from the point S  to the location of the object.  

 
Definition: Angular Momentum about a point S  
 
We define the angular momentum SL

!
 about the point S  of a point particle as the vector 

cross product of the vector from the point S  to the location of the object with the 
momentum of the particle, 
 

 S S= !L r p
! ! ! . (24.2.1) 

 
Since angular momentum is defined as a vector, we begin by studying its magnitude and 
direction. 
 
Magnitude 
 
The magnitude of the angular momentum about S  is given by 
 

 sinS S !=L r p
! ! ! , (24.2.2) 

 
where !  is the angle between the vectors  and p! , and lies within the range [0 ]! "# #  refer to 
Figures 15.2 and 15.3). The SI units for angular momentum are 2 1kg m s!" #$ $% & . Like the 
calculation of torque, there are two ways to visualize the magnitude of the angular momentum. 
 



 
Figure 24.2 Vector diagram for angular momentum. 

 
Define the moment arm, r! , as the perpendicular distance from the point S  to the line defined by 
the direction of the momentum. Then  
 

 sinSr !" = r
! . (24.2.3) 

 
Hence the magnitude of the angular momentum is the product of the moment arm with the 
magnitude of the momentum. 
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!
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Alternatively, define the perpendicular momentum, p! , to be the magnitude of the component of 
the momentum perpendicular to the line defined by the direction of the vector ,S mr

! . Thus 
 

 sinp !" = p
! . (24.2.5) 

 
We can think of the magnitude of the angular momentum as the product of the distance from S  
to the point object with the perpendicular momentum, 
 

 
   
!
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!rS p
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Right-Hand-Rule for the Direction of the Angular Momentum 
 
Draw the vectors Sr

!  and p!  so that their tails are touching. Then draw an arc starting from the 
vector Sr

!  and finishing on the vector p! . (There are two such arcs; choose the shorter one.) This 
arc is either in the clockwise or counterclockwise direction. Curl the fingers of your right hand in 
the same direction as the arc. Your right thumb points in the direction of the angular momentum. 
 



 
 

Figure 24.3 The Right Hand Rule. 
 
Remember that, as in all cross products, the direction of the angular momentum is perpendicular 
to the plane formed by Sr

!  and p! .  
 
24.2.1 Example Angular Momentum: Constant Velocity 
 
A particle of mass   m = 2.0 kg  moves as shown in the sketch with a uniform velocity 

1 1ˆ ˆ3.0 m s 3.0 m s! != " + "v i j! . At time  t , the particle passes through the point 

0
ˆ ˆ2.0 m 3.0 m= +r i j! . Find the direction and the magnitude of the angular momentum about the 

origin at time  t . 
 

 
 

Solution: Choose Cartesian coordinates with unit vectors shown in the figure above. The angular 
momentum vector L

!
 of the particle about the origin is given by: 
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!p = !r0 ! m !v
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!
0

= #6kg "m2 " s#1 k̂.

 

 
 

In the above, the relations , ,! = ! = " ! = ! =i j k j i k i i j j 0
! ! ! ! ! ! ! ! !! !

 were used. 
 
24.2.2 Example Angular momentum and circular motion 
 
A particle of mass m  move in a circle of radius r  at an angular speed !  about the z axis in a 
plane parallel to the x-y plane passing thorough the origin. Find the magnitude and the direction 
of the angular momentum 0L

!
 relative to the origin. 

 
Solution: 
 
The velocity of the particle is given by ˆr!=v! " . The vector from the center of the circle (the 
point S) to the object is given by ˆS r=r r!

. The angular momentum about the center of the circle 
is the cross product 
 

2ˆ ˆ ˆ
S S S m rmv rmr mr! != " = " = = =L r p r v k k k
! ! ! ! ! . 

 
The magnitude is 2

S mr !=L
!

, and the direction is in the ˆ+ k -direction. 

 
24.2.3 Example  
 
Problem: A particle of mass m  moves in a circle of radius r  at an angular speed !  about the z 
axis in a plane parallel to but a distance h  above the x-y plane. 



 
a) Find the magnitude and the direction of the angular momentum 0L

!
 relative to the origin. 

 
b) Also find the z component of  0L

!
. 

 
Solution: We begin by making a geometric argument. Suppose the particle has coordinates 
( , , )x y h . The angular momentum about the origin is defined as 
 

 0 0,m m= !L r v
! ! ! . (24.2.7) 

 
The vectors 0,mr

!
 and v!  are perpendicular to each other so the angular momentum is 

perpendicular to the plane formed by those two vectors. Recall that the speed v r!= . Suppose 
the vector 0,mr

!
 forms an angle !  with the z-axis. Then 0L

!
 forms an angle 90 !"!  with respect to 

the z-axis or an angle !  with respect to the x-y plane as shown in the figure on the right.  
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The magnitude of 0L

!
 is  

 
 2 2 2 1/ 2

0 0, ( ( ))m m m h x y r!= = + +L r v
! ! ! . (24.2.8) 

 
The magnitude of 0L

!
 is constant, but its direction is changing as the particle moves in a circular 

orbit about the z-axis, sweeping out a cone as shown in the figure below.  We draw the vector 
0L
!

 at the origin because it is defined at that point.  
 

 
 
We shall now explicitly calculate the cross product. We shall discover that taking the cross 
product using polar coordinates is the easiest way to calculate 

    
!
L0 =

!r0,m ! m!v . We begin by 
writing the two vectors that appear in Eq.  in polar coordinates . We start with the vector from 
the origin to the location of the moving object, 

    
!r0,m = xî + yĵ+ hk̂ = rr̂ + hk̂  where 

2 2 1/ 2( )r x y= + . The velocity vector is tangent to the circular orbit so     
!v = v !̂ = r" !̂ .  

 

 
 
Using the fact that   ̂r ! "̂ = k̂  and   k̂ ! "̂ = #r̂ ,  the angular momentum about the origin 0L

!
 is 

 
 

    
!
L0 =

!r0,m ! m!v = (rr̂ + hk̂) ! mr"#̂ = rmr"k̂ $ hmr"r̂ . (24.2.9) 
 
The magnitude of 0L

!
 is given by  

 
 2 2 1/ 2 2 2 1/ 2 2 2 2 1/ 2

0 (( ) ( ) ) ( ) ( ( ))rmr hmr m h r r m h x y r! ! ! != + = + = + +L
!

.(24.2.10) 
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Agreeing with our geometric argument. The direction of 0L

!
 is given by  

 

 
  
tan! = "

L0z

L0r

=
r
h
= tan#  (24.2.11) 

 
so ! "=  also agreeing with our geometric argument. 
 
The important point to keep in mind regarding this calculation is that for any point along the z-
axis not at the center of the circular orbit of a single particle, the angular momentum about that 
point does not point along the z-axis but it is has a non-zero component in the x-y plane (or in the 
ˆ!r  direction if you use polar coordinates). The z-component of the angular momentum about 

any point along the z-axis is independent of the location of the point along the axis. 
 
Torque and the Time Derivative of Angular Momentum for a Point Particle 
 
We will now show that the torque about a point S  is equal to the time derivative of the angular 
momentum about S . 
 

 
    

!
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d
!
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. (24.2.12) 

 
Take the time derivative of the angular momentum about S , 
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In this equation we are taking the time derivative of a cross product of two vectors. There are 
two important facts that will help us simplify this expression. First, the time derivative of the 
cross product of two vectors satisfies the product rule, 
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Second, the first term on the right hand side vanishes, 
  
 

 Sd m
dt

! = ! =
r p v v 0
! !! ! ! . (24.2.15) 

 
 
 
The rate of angular momentum change about the point S  is then 
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. (24.2.16) 

 
From Newton’s Second Law, the total force on the particle is equal to the change of linear 
momentum, 

 

 
   

!
F =

d!p
dt

. (24.2.17) 

 
Therefore the rate of change in time of angular momentum about the point S  is 
 

 
   

d
!
LS

dt
=
!rS !
!
F . (24.2.18) 

 
Recall that the torque about the point S  due to the force F

!
 acting on the particle is 

 
 S S= !r F

!!!
" . (24.2.19) 

 
Combining the expressions in (24.2.18) and (24.2.19), it is readily seen that the torque about the 
point S  is equal to the rate of change of angular momentum about the point S , 
 

 
   

!
!S =

d
!
LS

dt
. (24.2.20) 

 
24.3 Conservation of Angular Momentum about a Point  
 
So far we have introduced two conservation principles, showing that energy and linear 
momentum are constants for closed systems (no external forces implies the momentum is 
constant and no change in energy in the surroundings implies the energy in the system is 
constant). The conservation of mechanical energy was a consequence of the work-energy 
theorem; the total non-conservative work done on a system is equal to the change in mechanical 
energy, 
 

 total
nc mechanicalW E K U= ! = ! + ! . (24.3.1) 

 
If the non-conservative work done on a system is zero, then the mechanical energy is conserved, 
 

 total
nc mechanical0 W E K U= = ! = ! + !  (24.3.2) 

 
The conservation of linear momentum arises from Newton’s Second Law applied to systems, 
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Thus if the total external force in any direction is zero, then the component of the total 
momentum of the system in that direction is a constant, hence conserved. For example, if there 
are no external forces in the x - and y -directions then 
 

 

    

0 = (
!
Fext
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(!ptotal )x

0 = (
!
Fext
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 (24.3.4) 

 
We can now use our relation between torque about a point S  and the change of the angular 
momentum about S ,  
 

total
total S
S

d
dt

=
L
!

!
! , 

 
to introduce a new conservation law. Suppose we can find a point S  such that torque about the 
point S  is zero,  
 

 total total
S S

d
dt

= =0 L
! !!

! . (24.3.5) 

 
Then the angular momentum about the point S  is a constant vector, and so the change in angular 
momentum is zero, 
 

 total total total
, ,0S S f S! " # =L L L 0

!! ! !
. (24.3.6) 

 
Thus when the total torque about a point S  is zero, the final angular momentum about S  is 
equal to the initial angular momentum, 
 

 total total
, ,0S f S=L L
! !

. (24.3.7) 
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24.3.1 Example Meteor Flyby of Earth 
 
A meteor of mass m = 2.1!1013 kg  is approaching earth as shown on the sketch. The distance h  
on the sketch below is called the impact parameter. The radius of the earth is re = 6.37 !10

6 m . 
The mass of the earth is me = 5.98 !10

24 kg . Suppose the meteor has an initial speed of 
v0 = 1.0 !10

1m " s#1 . Assume that the meteor started very far away from the earth. Suppose the 
meteor just grazes the earth. You may ignore all other gravitational forces except the earth. Find 
the impact parameter h. 
 

 
 

Figure 24.8 Meteor Flyby of Earth 
 
Solution: Strategy. 
 

a) Draw a free body force diagram for the force acting on the meteor when the meteor is 
very far away and when the meteor just grazes the earth.  

 
b) Find a point about which the gravitational torque of the earth’s force on the meteor is 

zero for the entire orbit of the meteor. 
 

c) Find the initial angular momentum (when it is very far away) and final angular 
momentum (when it just grazes the earth) of the meteor. 

 
d) Apply conservation of angular momentum to find a relationship between the meteor’s 

final velocity and the impact parameter h . 
 

e) Apply conservation of energy to find a relationship between the final velocity of the 
meteor and the initial velocity of the meteor. 

 
f) Use your results in parts d) and e) to calculate the impact parameter h .  

 
Solution: 
                      
a) Free body diagrams. 
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Figure 24.9 Free Body Force Diagrams for Meteor 

 
 
b) Yes, the center of earth. Denote the center of the earth by S . The force on the meteor is 
given by 
 

 2 ˆeGm m
r

= !F r
!

!  (24.3.8) 

 
where r̂  is a unit vector pointing radially away from the center of the earth, and r  is the distance 
from the center of the earth to the metoer. The torque on the meteor is given by ,S S F! = "r F

!!! , 
where , ˆS F r=r r!  is the vector from the point S  to the position of the meteor. Since the force and 
the position vector are collinear, the cross product vanishes and hence the torque on the meteor 
vanishes about S .  
 
c) Initial Angular Momentum: Choose Cartesian coordinates as shown in the figure 
below. 
 

 
Figure 24.10 Momentum Flow Diagram for Meteor 

 
The initial angular momentum about the center of the earth is 
 

vo 

     

Fe 

 Earth 

 

vf 

Very Far Away Grazing the Earth 
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 0 ,0 0( )S S= !L r p
! ! !  (24.3.9) 

 
where the vector from the center of the earth to the meteor is  

!rS ,0 = !x0 î + h ĵ      (we can choose 

some arbitrary x0  for the initial distance in the x-direction), and the momentum is  
!p0 = mv0 î . 

Then the initial angular momentum is 
      

 0 ,0 0 0 0
ˆ ˆ ˆ ˆ( ) ( )S S ox h mv mv h= ! = " + ! = "L r p i j i k

! ! !  (24.3.10) 
 
The final angular momentum about he center of the earth is 
 

 ,( )S f S f f= !L r p
! ! !  (24.3.11) 

 
where the vector from the center of the earth to the meteor is  

!rS , f = re î  since the meteor is then 

just grazing the surface of earth, and the momentum is  
!p f = !mvf ĵ . So the final angular 

momentum about the center of the earth is  
      

 ,
ˆ ˆ ˆ( ) ( )S f S f f e f e fr mv mr v= ! = ! " = "L r p i j k

! ! !  (24.3.12) 
 
        d)   Since the angular momentum about the center of the earth is constant throughout the 
motion 
 

 0( ) ( )S S f=L L
! !

 (24.3.13) 
 
which implies that 
 

 !mv0h k̂ = !mrevf k̂  (24.3.14) 
 
or 

 vf =
v0h
re

 (24.3.15) 

  
        e)  The mechanical energy is constant and with our choice of zero for potential energy  
when the the meteor is very far away, the energy condition becomes 
 

 1
2
mv0

2 =
1
2
mvf

2 !
Gmem
re

 (24.3.16) 

 
So, 

 vf
2 = v0

2 +
2Gme

re
 (24.3.17) 
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       f )     Substituting for  v f from part (d) and solving for h , we have 
 

 h = re 1+
2Gme

rev0
2  (24.3.18) 

         
On substituting the values we have,  
 

 h = 1117.4 re = 7.12 !10
9m  (24.3.19) 

 
 
24.4 Angular Impulse and Change in Angular Momentum  
 
 If there is a total applied torque S

!
!  about a point S  over an interval of time 0ft t t! = " , then the 

torque applies an angular impulse about a point S , given by 
 

 
0

ft

S St
dt= !J

! !
" . (24.4.1) 

 
Because total /S Sd dt= L

!!
! , the angular impulse about S  is equal to the change in angular 

momentum about S ,  
 

 
0 0
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S
S S S S f St t
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= = = ! = "# #
LJ L L L
!

! ! ! !!
$ . (24.4.2) 

 
This result is the rotational analog to linear impulse, which is equal to the change in momentum; 
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pI F p p p
!! ! ! ! ! . (24.4.3) 
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