
  

         
 

  
 

  
 

  
 

            
  

 
     
 

   
 
 

    
 

        
        

 
 
         

        
       

         
     

 
 
    

     
            

         
        

      
 

 
         

    
    

          
        

                                                
          
  

Module 28: The Kepler Problem: Planetary Mechanics 

28.1 Introduction Kepler’s Laws:1 

1.	 Each planet moves in an ellipse with the sun at one focus. 

2.	 The radius vector from the sun to a planet sweeps out equal areas in equal time. 

3.	 The period of revolution T of a planet about the sun is related to the major axis 
A of the ellipse by 

T 2 = k A3	 (28.1.1) 

where k is the same for all planets. 

28.2 Planetary Orbits: The Kepler Problem 

Since Johannes Kepler first formulated the laws that describe planetary motion, scientists 
endeavored to solve for the equation of motion of the planets. In his honor, this problem 
has been named The Kepler Problem. 

When there are more than two bodies, the problem becomes impossible to solve 
exactly. The most important “three-body problem” at the time involved finding the 
motion of the moon, since the moon interacts gravitationally with both the sun and the 
earth. Newton realized that if the exact position of the moon were known, the longitude 
of any observer on the earth could be determined by measuring the moon’s position with 
respect to the stars. 

In the eighteenth century, Leonhard Euler and other mathematicians spent many 
years trying to solve the three-body problem, and they raised a deeper question. Do the 
small contributions from the gravitational interactions of all the planets make the 
planetary system unstable over long periods of time? At the end of 18th century, Pierre 
Simon Laplace and others found a series solution to this stability question, but it was 
unknown whether or not the series solution converged after a long period of time. Henri 
Poincaré proved that the series actually diverged. 

Poincaré went on to invent new mathematical methods that produced the modern 
fields of differential geometry and topology in order to answer the stability question 
using geometric arguments, rather than analytic methods. Poincaré and others did manage 
to show that the three-body problem was indeed stable, due to the existence of periodic 
Solution. Just as in the time of Newton and Leibniz and the invention of calculus, 

1 As stated in An Introduction to Mechanics, Daniel Kleppner and Robert Kolenkow, McGraw-Hill, 1973, 
p 401. 
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unsolved problems in celestial mechanics became the experimental laboratory for the 
discovery of new mathematics. 

28.3 Reducing the Two-Body Problem into a One-Body Problem 

We shall begin our solution of the two-body problem by showing how the motion of two 
bodies interacting via a gravitational force (two-body problem) is mathematically 
equivalent to the motion of a single body with a reduced mass given by 

m m 1 2 (28.3.1) µ = 
m + m1 2 

that is acted on by an external central gravitational force. Once we solve for the motion of 
the reduced body in this equivalent one-body problem, we can then return to the real two-
body problem and solve for the actual motion of the two original bodies. 

The reduced mass was introduced in Section 10.7 of these notes. That section used 
similar but different notation from that used in this chapter. 

Consider the gravitational force between two bodies with masses m1 and m2 as 
shown in Figure 28.1. 

Figure 28.1 Gravitational force between two bodies. 

!Choose a coordinate system with a choice of origin such that body 1 has position r1 and 
! !body 2 has position r2 (Figure 28.2). The relative position vector r pointing from body 2 

! ! ! ! !to body 1 is r = r1 ! r2 . We denote the magnitude of r by r = r , where r is the distance 
between the bodies, and  r̂ is the unit vector pointing from body 2 to body 1, so that 

! r = r r̂ (28.3.2) 

2 



  

 
 

 
 
  
 

   

 
           

 
 
   
 

 
 

   

 

   

 
 

    
 

   

 

   

 
   

 
  

Figure 28.2 Coordinate system for the two-body problem. 

The force on body 1 (due to the interaction of the two bodies) can be described as 

! 
1 2 r̂ . (28.3.3) F = !F r̂ = ! G m m 

1,2 1,2 2r 

Recall that Newton’s Third Law requires that the force on body 2 is equal in magnitude 
and opposite in direction to the force on body 1, 

! ! 
F1,2 = !F2,1 . (28.3.4) 

Newton’s Second Law can be applied individually to the two bodies: 

!! d 2r1F = m1,2 1 2 , (28.3.5) 
dt 

! d 2r ! F2,1 = m2 2
2 . (28.3.6) 

dt 

Dividing through by the mass in each of Equations (28.3.5) and (28.3.6) yields 

! 
2F1,2 = 
d r ! 1 , (28.3.7) 

m1 dt 2 

! 
F2,1 d 2r ! 2 . (28.3.8) = 
m2 dt 2 

Subtracting the expression in Equation (28.3.8) from that in Equation (28.3.7) gives 
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! ! ! ! !2 2 2F1,2 F2,1 d r1 d r2 d r . (28.3.9) ! = ! = 2 2 2m1 m2 dt dt dt 

Using Newton’s Third Law as given in Equation (28.3.4), Equation (28.3.9) becomes 

!! 2! 1 1 " d r . (28.3.10) F + = 1,2 # $ 2m m dt % 1 2 & 

Using  the reduced mass µ , as defined in Equation (28.3.1) , 

1 1 1 , (28.3.11) = + 
µ m m1 2 

Equation (28.3.10) becomes 
! 
F 2! 
1,2 d r 
= 

µ dt 2 (28.3.12) !! 2 

F1,2 = µ 
d r 

2dt 
! 

where F1,2 is given by Equation (28.3.3). 

Our result has a special interpretation using Newton’s Second Law. Let µ be the 
!reduced mass of a reduced body with position vector r = r r̂ with respect to an origin O , 

where r̂ is the unit vector pointing from the origin O to the reduced body. Then the 
equation of motion, Equation (28.3.12), implies that the body of reduced mass µ is under 
the influence of an attractive gravitational force pointing toward the origin. So, the 
original two-body gravitational problem has now been reduced to an equivalent one-body 
problem, involving a reduced body with reduced mass µ under the influence of a central 
force ! F1,2 r̂ . Note that in this reformulation, there is no body located at the central point 
(the origin O ). The parameter r in the two-body problem is the relative distance 
between the original two bodies, while the same parameter r in the one-body problem is 
the distance between the reduced body and the central point. 

28.4 Energy and Angular Momentum, Constants of the Motion 

Consider the reduced body with reduced mass given by Equation (28.3.1), orbiting about 
a central point under the influence of a radially attractive force given by Equation 
(28.3.3). The equivalent one-body problem has two constants of the motion, energy E 
and the angular momentum L about the origin O . Energy is a constant because there are 

4 



  

       
          

           
       

         
 

 
            
              

       

     
 

 
 

 
 

           
  

 

   

 
           

 
 

   

 
          

 
 

 

    

  

 
    

 

no external forces acting on the reduced body, and angular momentum is constant about 
the origin because the only force is directed towards the origin, and hence the torque 
about the origin due to that force is zero (the vector from the origin to the reduced body 
is anti-parallel to the force vector and sin ! = 0 ). Since angular momentum is constant, 
the orbit of the reduced body lies in a plane with the angular momentum vector pointing 
perpendicular to this plane. 

Choose polar coordinates (r, !) for the reduced body (see Figure 28.3), where r is the 
distance of the reduced body from the central point that is now taken as the origin, ! is 
the angle that the reduced body makes with respect to a chosen direction, and which ! 
increases positively in the counterclockwise direction, and F grav = ! F1, 2 r̂ . 

Figure 28.3 Coordinate system for the orbit of the reduced body. 

Since the force is conservative, the potential energy with choice of zero reference point 
( ) = 0U ! is given by 

Gm m ( ) = ! 1 2 . (28.4.1) U r 
r 

The total energy E is constant, and the sum of the kinetic energy and the potential 
energy is 

1 Gm m 2 1 2E = µ v ! . (28.4.2) 
2 r 

The kinetic energy term, µv2 / 2 , has the reduced mass and the relative speed v of the 
two bodies.  The velocity is cylindrical coordinates is given by  (add link) 

ˆv ! = vrad r̂ + vtan !, 
2 2 (28.4.3) " dr % " d! %2 2 2v + v = + r= vrad tan $ ' $ ' # dt & # dt & 

where v = dr / dt and v = ( ! / dt r d ) . Equation (28.A.2) then becomes rad tan 

5 



  

 

  
  

 
 

 

   

 
     

 
        

          
        

          
  

 
 

 

 

    

  

 

   

  
    
 

   

 
           

         
 

 

   

 
   

       
 

( 2 2 +1 ! dr $ ! d' $ G m1 m2E = µ * + r - . . (28.4.4) # & # &2 *" dt % " dt % - r
) , 

The magnitude of the angular momentum with respect to the center of mass is 

2 d!L = µ r v tan = µ r . (28.4.5) 
dt 

28.5 The Orbit Equation for the Reduced Body 

There are two approaches to describing the motion of the reduced body. We can 
try to find both the distance from the origin, r t ( ) and the angle, ! ( ) t , as functions of the 
parameter time, but in most cases explicit functions can’t be found analytically. We can 
also find the distance from the origin, r( )! , as a function of the angle ! . This second 
approach offers a spatial description of the motion of the reduced body. 

We begin with Newton’s Second Law 
! !F = µ a 

# d 2 2 &m1m2 r # d" & (28.5.1) 
!G 2 r̂ = µ % ! r ( r̂.% (r % dt2 $ dt ' ($ ' 

Note that the motion is no longer circular, the radius is not constant so there is a term in 
the radial acceleration d 2r / dt2 along with the usual centripetal acceleration term 
!r(d" / dt)2 . Setting the components equal, using the constant of motion 
L = µr 2 (d! / dt) and rearranging, 

2 2d r L Gmm 1 2 . (28.5.2) µ = !2 3 2dt µ r r 

What we will do is use the same substitution u = 1/ r and change the independent 
variable from t to r , using the chain rule twice, since Equation (28.5.2) is a second-order 
equation.  That is, the first time derivative is 

dr dr du dr du d ! 
= = . (28.5.3) 

dt du dt du d ! dt 

From r = 1/ u we have dr / du = !1/ u2 . Combining with the angular velocity 
d! / dt = L / µr 2 in terms of L and u , d! / dt = Lu 2 / µ , Equation (28.5.3) becomes 
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dr 1 du Lu 2 du L 
= " = " , (28.5.4) 

dt u2 d! µ d! µ 

Taking the second derivative with respect to t , 

2d r d " dr # d " dr # d! 
= =$ % $ %dt 2 dt & dt ' d! & dt ' dt 

2d u L " L 2 # u (28.5.5) $= ( 
d! 2 µ µ % 

& ' 
2 2d u 2 L 

= ( u2 2 .d! µ 

Substituting into Equation (28.5.2), and using r = 1/ u , 

2 2 2d u 2 L L 3 2" u = u " Gmm u . (28.5.6) 
d! 2 µ µ 1 2 

Canceling the common factor of u2 and rearranging, 

d 2u µGm1m2+ u = . (28.5.7) 
d! 2 L2 

Equation (28.5.7) is mathematically equivalent to the Harmonic Oscillator Equation with 
a constant term.  The solution consists of two parts: the angle-independent solution 

µGm m u0 = 2
1 2 (28.5.8) 
L 

and a sinusoidally varying term of the form 

uH (!) = Acos(! "!0 ) , (28.5.9) 

where A and !0 are constants determined by the form of the orbit. The expression in 
Equation (28.5.8) is the inhomogeneous solution and represents a circular orbit. The 
expression in Equation (28.5.9) is the homogeneous solution (as hinted by the subscript) 
and must have two independent constants.  Define 

r0 ! L2 / µG m1 m2 . (28.5.10) 

This is called the semilatus rectum. Then u0 = 1 / r0 and we can write the solution to 
Equation (28.5.7) as the sum of the inhomogeneous (Eq. (28.5.8)) and homogenous (Eq. 
(28.5.9)) pieces 
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1 u = u + u = (1+ r0 A(cos(! "!0 ))) 0 H r0 (28.5.11) 
r0r = .

1+ r0 Acos(! "!0 ) 

We have two constants to choose. Define A ! " / r0 where 

! = 1+ 2µEr0 
2 / L2 = 1+ 2EL2 / µ(G m1 m2 )

2 (28.5.12) 

a quantity called eccentricity. Choose !0 = " then cos(! " # ) = "cos(!) . Thus Equation  
(28.5.11) can be written in the form 

r0r = . (28.5.13) 
1! " cos# 

The two constants of the motion in terms of r0 and ! are 

1 

L = (µ G m1 m2 r0 )2 

(28.5.14) G m1 m2 (! 2 " 1) 
E = . 

2r0 

The orbit equation as given in Equation (28.5.13) is a general conic section and is 
perhaps somewhat more familiar in Cartesian coordinates. Let x = r cos ! and 

2 2 2y = r sin ! , with r = x + y . The orbit equation can be rewritten as 

r = r0 + ! r cos " . (28.5.15) 

Using the Cartesian substitutions for x and y , rewrite Equation (28.5.15) as 

2 2 )1/ 2 (x + y = r0 + ! x . (28.5.16) 

Squaring both sides of Equation (28.5.16), 

2 2 2 2 2x + y = r0 + 2! x r 0 + ! x . (28.5.17) 

After rearranging terms, Equation (28.5.17) is the general expression of a conic section 
with axis on the x -axis, 

x2 (1! " 2 ) ! 2" x r0 + y2 = r0
2 (28.5.18) 
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(we now see that the dotted axis in Figure 28.3 can be taken to be the x -axis). 

For a given r0 > 0 , corresponding to a given nonzero angular momentum as in Equation 
(28.5.10), there are four cases determined by the value of the eccentricity. 

Case 1: When ! = 0 , E = E < 0 and r = r . Equation (28.5.18) is the equation for a min 0 

circle, 

2 2 2x + y = r0 (28.5.19) 

Case 2: When 0 < ! < 1 , Emin < E < 0 and Equation (28.5.18) describes an ellipse, 

y2 + Ax 2 ! B x = k (28.5.20) 

where A > 0 and k is a positive constant. (Appendix 17.C shows how this expression 
may be expressed in the more traditional form involving the coordinates of the center of 
the ellipse and the semimajor and semiminor axes.) 

Case 3: When ! = 1 , E = 0 and Equation (28.5.18) describes a parabola, 

y2 r
! 0 . (28.5.21) x = 

2r0 2 

Case 4: When ! > 1 , E > 0 and Equation (28.5.18) describes a hyperbola, 

y2 ! Ax 2 ! B x = k (28.5.22) 

where A > 0 and k is a positive constant. 

28.6 Energy Diagram, Effective Potential Energy, and Orbits 

The energy (Equation (28.A.7)) of the reduced body moving in two dimensions can be 
reinterpreted as the energy of a reduced body moving in one dimension, the radial 
direction r , in an effective potential energy given by two terms, 

L2 Gm m 1 2 . (28.6.1) U = !eff 22µ r r 

The total energy is still the same, but our interpretation has changed; 

" 21 ! dr 
2 L Gm m 1 2 , (28.6.2) E = K +U = + #eff eff $2 

µ 
& dt %' 2µ r 2 r 
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where the effective kinetic energy Keff associated with the one-dimensional motion is 

1 ! dr " 
2 

µ $ . (28.6.3) Keff = #2 % dt & 

The graph of U as a function of r= r / r , where r0 as given in Equation (28.5.10), is eff 0 

shown in Figure 28.4. The upper curve (red, if you can see this in color) is proportional 
to L2 / (2µr 2 ) ! 1 / 2r 2 . The lower blue curve is proportional to !Gm m / r ! !1/ r . The 1 2 

sum U is represented by the green curve. The minimum value of U is at r = r , as eff eff 0 

will be shown analytically below.  The vertical scale is in units of !U r0 .eff ( )

Figure 28.4 Graph of effective potential energy. 

Whenever the one-dimensional kinetic energy is zero, Keff = 0 , the energy is equal to the 
effective potential energy, 

L2 Gm m 1 2 . (28.6.4) E = U = !eff 22µ r r 

Recall that the potential energy is defined to be the negative integral of the work done by 
the force. For our reduction to a one-body problem, using the effective potential, we will 
introduce an effective force such that 

B ! B 
eff eff Ueff , B !Ueff , A = !#F " dr ! = !# Fr dr (28.6.5) 

A A 
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The fundamental theorem of calculus (for one variable) then states that the integral of the 
derivative of the effective potential energy function between two points is the effective 
potential energy difference between those two points, 

B dU eff dr (28.6.6) U !U = " eff , B eff , A 

A dr 

Comparing Equation (28.6.6) to Equation (28.6.5) shows that the radial component of the 
effective force is the negative of the derivative of the effective potential energy, 

eff dU eff Fr = ! (28.6.7) 
dr 

The effective potential energy describes the potential energy for a reduced body moving 
in one dimension. (Note that the effective potential energy is only a function of the 
variable r and is independent of the variable ! ). There are two contributions to the 
effective potential energy, and the total radial component of the force is 

eff d d ! L2 Gm m 2 " 1 
% (28.6.8) Fr = # Ueff = # #$ 2dr dr 2µ r r& ' 

Thus there are two “forces” acting on the reduced body, 

Fr 
eff = Fr , centifugal + Fr , gravity , (28.6.9) 

with an effective centrifugal force given by 

d ! L2 " L2 (28.6.10) F = # = r ,centrifugal $ 2 % 3dr 2µ r µ r& ' 

and the conventional gravitational force 

Gm m Fr , gravity = ! 1
2 

2 . (28.6.11) 
r 

With this nomenclature, let’s review the four cases presented in Section 17.3. 

Case 1: Circular Orbit  E = Emin 
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The lowest energy state, Emin , corresponds to the minimum of the effective potential 
energy, Emin . When this condition is satisfied the effective kinetic energy is = (Ueff )min 

zero since E = K +U . The condition eff eff 

1 ! dr " 
2 

K = µ $ = 0 (28.6.12) #eff 2 % dt & 

implies that the radial velocity is zero, so the distance r from the central point is a 
constant. This is the condition for a circular orbit. The condition for the minimum of the 
effective potential energy is 

dU eff L2 Gmm 1 2 . (28.6.13) 0 = +
dr 

= ! 
µ r3 r 2 

We can solve Equation (28.6.13) for r , 

L2 r ! r = , (28.6.14) 0 Gmm 1 2 

reproducing Equation (28.5.10). 

Case 2: Elliptic Orbit Emin < E < 0 

When Keff = 0 , the mechanical energy is equal to the effective potential energy, E = Ueff , 
as in Equation (28.6.4). Having dr / dt = 0 corresponds to a point of closest or furthest 
approach as seen in Figure 28.4. This condition corresponds to the minimum and 
maximum values of r for an elliptic orbit, 

L2 Gm m 1 2 (28.6.15) E = 
2µ r 2 

! 
r 

Equation (28.6.15) is a quadratic equation for the distance r , 

2 Gm m 1 2 L2 r + r ! = 0 (28.6.16) 
E 2µE 

with two roots 

2Gm m !! Gm m " 
2 L "

1/ 2 

1 2 1 2r = # + % . (28.6.17) $$2E 
± 
&
$
& 2E '

% 2µE %' 

Equation (28.6.17) may be simplified somewhat as 
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1/ 2 ! 2 " ! "Gm m 2L E 
$ $ (28.6.18) r = % 1 2 #1± #1+ 

2E # #
& µ(Gm m )2 $ $1 2 ' & ' 

Recall from Equation (28.5.12), the square root is the eccentricity ! , given by 

! = 1+ 2µEr0 
2 / L2 = 1+ 2EL2 / µ(G m1 m2 )

2 (28.6.19) 

Thus Equation (28.6.18) becomes 

Gm m r = " 1 2 (1± ! ). (28.6.20) 
2E 

A little algebra shows that 

r L2 / µ Gm m 0 1 2= 
1"! # 2 $2 2L E 1"%1+ 2% µ(Gm m ) &

& 
' 1 2 ( 

L2 / µGm m 
= 1 2 

2 2 (28.6.21) 
"2L E / µ(Gm m )1 2 

Gm m 1 2= " . 
2E 

Substituting the last expression in (28.6.21) into Equation (28.6.20) gives an expression 
for the points of closest and furthest approach, 

r0 (1 ± ! ) . (28.6.22) r = 
1"! 2 

The minus sign corresponds to the distance of closest approach, 

r r " r = 0 (28.6.23) min 1+ ! 

and the plus sign corresponds to the distance of furthest approach, 

r r " rmax = 0 . (28.6.24) 
1#! 

Case 3: Parabolic Orbit E = 0 
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The effective potential energy, as given in Equation (28.6.1), approaches zero ( Ueff ! 0 ) 
when the distance r approaches infinity ( r !" ). Since the total energy is zero, when 
r !" the kinetic energy also approaches zero, Keff ! 0 . This corresponds to a 
parabolic orbit (see Equation (28.5.21)). Recall that in order for a body to escape from a 
planet, the body must have a total energy E = 0 (we set Ueff = 0 at infinity). This escape 
velocity condition corresponds to a parabolic orbit. 

For a parabolic orbit, the body also has a distance of closest approach. This 
distance rpar can be found from the condition 

2 Gm m L 1 2 = 0 . (28.6.25) E = U = !eff 22µ r r 

Solving Equation (28.6.25) for r yields 

L2 1 r = = r ; (28.6.26) par 2µ Gm m 2 0 
1 2 

the fact that the minimum distance to the origin (the focus of a parabola) is half the 
semilatus rectum is a well-known property of a parabola. 

Case 4: Hyperbolic Orbit E > 0 

When E > 0 , in the limit as r !" the kinetic energy is positive, Keff > 0 . This 
corresponds to a hyperbolic orbit (see Equation (28.5.22)). The condition for closest 
approach is similar to Equation (28.6.15) except that the energy is now positive. This 
implies that there is only one positive solution to the quadratic Equation (28.6.16), the 
distance of closest approach for the hyperbolic orbit 

r rhyp = 0 . (28.6.27) 
1+ ! 

The constant r0 is independent of the energy and from Equation (28.5.12) as the energy 
of the reduced body increases, the eccentricity increases, and hence from Equation 
(28.6.27), the distance of closest approach gets smaller. 

28.7 Orbits of the Two Bodies 

The orbit of the reduced body can be circular, elliptical, parabolic or hyperbolic, 
depending on the values of the two constants of the motion, the angular momentum and 
the energy. Once we have the explicit solution (in this discussion, r( )! ) for the reduced 
body, we can find the actual orbits of the two bodies. 
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Choose a coordinate system as we did for the reduction of the two-body problem 
(Figure 28.5). 

Figure 28.5 Center of mass coordinate system. 

The center of mass of the system is given by 

! !! m r + m r1 1 2 2 . (28.7.1) Rcm = 
m + m1 2 

Let r! 1! be the vector from the center of mass to body 1 and r ! 2! be the vector from the 
center of mass to body 2. Then, by the geometry in Figure 28.5, 

! ! ! ! ! r = r " r = r!" r! (28.7.2) 1 2 1 2 

and hence 

! ! ! !!! ! ! m r + m r m (r ! r ) µ !1 1 2 2 2 1 2 r . (28.7.3) r" = r ! R = r ! = = 1 1 cm 1 m + m m + m m1 2 1 2 1 

A similar calculation shows that 

! µ ! r . (28.7.4) r2! = " 
m2 

Thus each body undergoes a motion about the center of mass in the same manner that the 
reduced body moves about the central point given by Equation (28.5.13). The only 
difference is that the distance from either body to the center of mass is shortened by a 
factor µ / mi . When the orbit of the reduced body is an ellipse, then the orbits of the two 
bodies are also ellipses, as shown in Figure 28.6. 
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Figure 28.6 The elliptical motion of bodies under mutual gravitation. 

When one mass is much smaller than the other, for example m1 ! m2 , then the reduced 
mass is approximately the smaller mass, 

m m m m 1 2 1 2 = m1 (28.7.5) µ = ! 
m + m m1 2 2 

The center of mass is located approximately at the position of the larger mass, body 2 of 
mass m2 . Thus body 1 moves according to 

! µ ! ! r " r (28.7.6) r1! = 
m1 

and body 2 is approximately stationary, 

! µ ! m ! ! 1 r # 0 (28.7.7) r2! = " r " 
m m2 2 
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28.8 Kepler’s Laws 

Elliptic Orbit Law 

Each planet moves in an ellipse with the sun at one focus. 

When the energy is negative, E < 0 , and according to Equation (28.5.12), 

1 

" #2 E L 2 2 

! = $1+ 2 % (28.8.1) 
$ µ Gm m %
& ( 1 2 ) ' 

and the eccentricity must fall within the range 0 " ! < 1. These orbits are either circles or 
ellipses. Note the elliptic orbit law is only valid if we assume that there is only one 
central force acting. We are ignoring the gravitational interactions due to all the other 
bodies in the universe, a necessary approximation for our analytic solution. 

Equal Area Law 

The radius vector from the sun to a planet sweeps out equal areas in equal time. 

Using analytic geometry, the sum of the areas of the triangles in Figure 28.7 is given by 

1 (r "! ) 1 (r "! )
"A = (r "! )r + "r"A = (r "! )r + "r (28.8.2) 

2 2 2 2 

in the limit of small "! . 

Figure 28.7 Kepler’s equal area law. 

The average rate of the change of area, !A , in time, !t , is given by 

1 (r "! )r (r"! ) "r
"A = + . (28.8.3) 

2 "t 2 "t 
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In the limit as !t " 0 , "! # 0 , this becomes 

dA 1 2 d! 
= r (28.8.4) 

dt 2 dt 

Recall that according to Equation (28.A.6) (reproduced below as Equation (28.8.5)), the 
angular momentum is related to the angular velocity d! / dt by 

d! L 
2 (28.8.5) = 

dt µ r 

and Equation (28.8.4) is then 

dA L 
= . (28.8.6) 

dt 2µ 

Since L and µ are constants, the rate of change of area with respect to time is a 
constant. This is often familiarly referred to by the expression: equal areas are swept out 
in equal times (see Kepler’s Laws at the beginning of this chapter). 

Period Law 

The period of revolution T of a planet about the sun is related to the major axis A of 
the ellipse by 

T 2 = k A 3 

where k is the same for all planets. 

When Kepler stated his period law for planetary orbits based on observation, he only 
noted the dependence on the larger mass of the sun. Since the mass of the sun is much 
greater than the mass of the planets, his observation is an excellent approximation. 

Equation (28.8.6) can be rewritten in the form 

dA 2µ = L . (28.8.7) 
dt 

Equation (28.8.7) can be integrated as 

T
2µ dA = L dt (28.8.8) ! !0 

orbit 

where T is the period of the orbit. For an ellipse, 
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Area = dA = ! ab (28.8.9) " 
orbit 

where a is the semimajor axis and b is the semiminor axis. Thus we have 

2µ ! ab T = . (28.8.10) 
L 

Squaring Equation (28.8.10) then yields 

2 2 2 2 
2 4! µ a b T = 2 . (28.8.11) 

L 

In Appendix 17.B, the angular momentum is given in terms of the semimajor axis and the 
eccentricity by Equation (28.B.10). Substitution for the angular momentum into Equation 
(28.8.11) yields 

2b24! 2 µ 2aT 2 . (28.8.12) = 
µ Gm1 m2 a(1" # 2 ) 

In Appendix 17.B, the semi-minor axis is given by Equation (28.B.22) which upon 
substitution into Equation (28.8.12) yields 

2 2 3 
2 4! µ a . (28.8.13) T = 

µ Gm m 1 2 

Using Equation (28.3.1) for reduced mass, the square of the period of the orbit is 
proportional to the semi-major axis cubed, 

4! 2a3 . (28.8.14) T 2 = 
G (m + m )1 2 
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28.9 Worked Examples 

28.9.1 Example Satellite Orbits 

A satellite of mass ms is initially in a circular orbit of radius r0 around the earth. The 
earth has mass m >> m and radius R . Let G denote the universal gravitational e s	 e

constant. Express all your answers in terms of Re , me , ms , G and r0 as needed. 

a)	 Find an expression for the speed v0 of the satellite when it is in the circular orbit. 

b)	 Find an expression for the mechanical energy E0 of the satellite when it is in the 
circular orbit.  Take U(r) ! 0 as r !" . 

As a result of an orbital maneuver the satellite trajectory is changed to an elliptical orbit. 
This is accomplished by firing a rocket for a short time interval thus increasing the 
tangential speed of the satellite. The apogee (farthest distance from earth) of the elliptical 
orbit is three times the closest approach (perigee), 

r = 3r = 3r .a p 0 

(In the figure, the small red circle represents the earth.) 

c)	 Use conservation of energy and angular momentum for the elliptic orbit to find an 
expression for the speed of the satellite, vp , immediately after the rocket has 
finished firing. 

Solution: 
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a) This preliminary part should be found directly from Newton’s Second Law and the 
Universal Law of Gravitation. The magnitude of the acceleration for the circular orbit is 
v0
2 / r0 , and so 

2v m m 0 s e= G 2ms r r0 0 

0 e 0/ .v Gm r= 

b) The total mechanical energy is the sum of the kinetic energy and the gravitational 
potential energy, 

m m 1 2s e +E = !G m v s 00 r0 2 
1 m m s e= ! G . 
2 r0 

c) Since rp = r0 , and ra = 3r0 , the condition that angular momentum is constant 
r v = r v becomes r0vp = (3r0 )va , so v = v / 3 . The condition that the mechanical p p a a a p 

energy is constant then becomes, 

1 me 1 me2 ! G ms 2 ! G ms= 
2 
msvp r0 2 

msva ra 
1 " vp % 

2 
me! G ms= 

2 
ms $ ' # 3 & 3r0 

4 2 2 G me= 
9 
vp 3 r0 

As a simple check, note that vp > v0 . As a further check, some minor algebra shows that 
after the rocket burn, the final mechanical energy is Ef = !Gmsme / (4r0 ) = !Gmsme / A , 
where A = r0 + 3r0 is the major axis of the ellipse. 

vp = (3 / 2)Gme / r0 . 
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28.9.2 Example Halley’s Comet 

The equation for any orbit in an inverse square gravitational field is given by 

r r = 0	 (28.9.1) 
1#! cos " 

where 

L2 .	 (28.9.2) r = 0	 µGm m 1 2 

In Equation (28.9.2), L is the angular momentum, µ = mm (m + m ) is the reduced 1 2 1 2 

mass, and ! is the eccentricity of the orbit. When 0 < ! < 1, the orbit is an ellipse (in the 
above figure, ! = 3/5 ). The period, T , depends only on the length of the major axis, A , 
of the ellipse, which is given by 

1/3 2# 2T G (m1 + m2 )$ 2rA = % 2 & = 0 
2	 (28.9.3) 

! 1'" ( ) 
. 

Halley’s Comet is in an elliptic orbit about the sun. The eccentricity of the orbit is 
! = 0.967 and the period is T = 76y . The mass of the sun is msun = 1.99 !10 30 kg . The 
mass of Halley’s Comet is negligible compared to the sun. 

a)	 Using this data, determine the distance of Halley’s Comet at closest approach rp
(perihelion) to the sun, and furthest distance ra (aphelion) from the sun. 

b) What is the speed vp of Halley’s Comet when it is closest to the sun? 

Solution: 
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Before diving into the numerical calculations, let’s do some preliminary math. 

First, note that when m ! m (note that m is not given in the problem), comet sun comet

m + m ! m and 1 2 sun 

m m 1sun comet ! m . (28.9.4) µ = = mcomet comet mmsun + mcomet 1+ comet / msun 

Next, from Equation (28.9.1), we have 

r r r = 0 , r = 0 (28.9.5) p 1+ ! a 1"! 

and combining with Equation (28.9.3) gives 

r = 
A r0 (1"! ), ra = 

A r0 (1+ ! ). (28.9.6) p 2 2 

As a quick check, note that rp + ra = A , the major axis. 

Next, anticipating part (b), we expect to use angular momentum considerations. At 
perihelion, the comet must be moving perpendicular to the vector from the sun to the 
comet, and so the magnitude of the angular momentum in terms of v , r and m isp p comet

L = m v r . (28.9.7) comet p p 

Combining with Equation (28.9.2) (with m = m , m = m , or vice versa) and the 1 sun 2 comet 

simplification for µ as given in Equation (28.9.4) and solving for vp gives 

( )2 
0 sun comet 0 sun sun 

p 
comet p comet p p p 

1Gr m m Gr m G mL v 
m r m r r r 

!+ 
= = = = . (28.9.8) 

The mass of the comet does indeed drop out of this problem if m ! m .comet sun 

It’s time to do the numbers. The calculations presented here were done by computer, 
keeping almost arbitrary precision in the intermediate calculations, and rounded to three 
figures (even though the period is given to only two figures). For the Newtonian 

!11 2 !2gravitational constant, G = 6.67 "10 N m # # kg was used. 
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a) Since the major axis A is used for determining both rp and ra , find that quantity first. 
From Equation (28.9.3), with m + m = m ,1 2 sun 

1/3 2# 2T Gm sun $A = % 2 &!' ( 
7 "1 "11 2 "2 30 # 2 76y )3.16 )10 s * y 6.67 )10 N m * kg 1.99 )10 kg 

= % 
( )( * )( )$

1/3 

2 & (28.9.9) 
% ! &
' ( 

= 5.37 )10 12 m 

from which Equation (28.9.6) gives 

10 12 rp = 8.86 !10 m, ra = 5.28 !10 m . (28.9.10) 

These results are roughly half and thirty times the earth-sun distance, respectively; rp is 
roughly the distance from the sun to the ex-planet Pluto. If fact, the period of Halley’s 
Comet is roughly 1/ 8 the period of Pluto’s orbit, consistent with Equation (28.9.3). 

A graph of the orbit is shown here: 

The tiny dot (red, if viewed in color) represents the sun and is not to scale; a circle 
representing the sun to scale on this scale is too small to be seen ( r > 100 R ).p sun 

b) Equation (28.9.8) then gives, with the result in Equation (28.9.10), 

4 "15.43 10 m s $= # . (28.9.11) 
( ) sun 

p 
p 

1G m 
v 

r 
!+ 

= 

This is essentially (but of course smaller than) the escape velocity from the sun. In fact 
2 2 1it’s not too hard to show that v / v = (1+ ! ) , which is 0.9835 for the eccentricity of p escape 2 

this orbit. 
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28.9.3 Example Lunar Orbit Collision 

A lunar mapping satellite of mass ms is in a circular orbit around the moon, and the orbit 
has radius R0 = 1.5 Rm where Rm is the radius of the moon. A repair robot of mass 
mr < ms is injected into that orbit, but due to a NASA sign error it orbits in the opposite 
direction. The two collide and stick together in a useless metal mass. The point of this 
problem is to find whether they create more junk orbiting the moon or crash into the lunar 
surface. The mass of the moon is denoted by mm . The universal gravitational constant is 
denoted by G. 

a.	 What is the initial orbital velocity of the mapping satellite, v0 ? Express your 
answer in terms of R0 , mm , and G. 

b.	 What is the speed of the space junk (satellite and robot) immediately after the 
collision? Write it as f v0 , where you must determine the number f . Express 
your answer in terms of ms and mr . 

c.	 After the collision, the orbit of the space junk has changed. Use conservation of 
energy and angular momentum to find an equation for the closest approach rp of 
the space junk to the moon. 

d.	 Solve your equation in part c for the number f assuming that the closest 
approach rp = Rm , the space junk hits the moon. 

Solution: 

a) The speed of the mapping  satellite undergoing uniform circular motion can be found 
from the force equation, 

Gm m m v 2 
s m s 0! 

R0
2 = ! 

R0 

(28.9.12) 
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So the speed is 

v0 = Gm p / R0 (28.9.13)
 

b) The momentum flow diagram for the collision is shown below. 

Because there are no external forces, the momentum is constant and so 

m v0 ! m v0 = (m + m )v f . (28.9.14) s r s r 

Thus the speed after the collision is 

m ! m 
v f = s r v0 = fv0 , (28.9.15) 

m + m s r 

where the ratio of speed after the collision to the speed before the collision is given by the 
number 

v m ! m 
= s rf = f . (28.9.16) 

m + mv0 s r 

c) After the collision, the energy equation is given by 

2 ( s + mr )mp 1 G m ( + m )m1 G m 2 s r p .(28.9.17) (m + m )v ! = (m + m )v !s r f s r p2 R 2 r0 p 

Setting v f = fv 0 and simplifying yields 

1 Gm 1 Gm 2 2 p 2 p . (28.9.18) f v0 ! = v ! 
2 R0 2 p rp 

The angular momentum equation is 
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(m + m )R v = (m + m )r v . (28.9.19) s r 0 f s r p p 

Again setting = fv , Eq. (28.9.19) becomes v f 0 

R fv = r v (28.9.20) 0 0 p p 

Eq. (28.9.20) implies that v = R fv 0 / r which we can substitute into Eq. (28.9.18) p 0 p 

yielding 

2 
1 Gm 1 ! R fv " Gm 2 2 p 0 0 pf v # = % # . (28.9.21) $ %2 0 R 2 

$ 
r r0 & p ' p 

Collecting terms yields 
1 2 2 ! R 2 " ! 1 1 " f v $1# 0 % = Gm $ # % . (28.9.22) 0 2 p$ % $ %2 r R r& p ' & 0 p ' 

If we assume that at the closest approach rp = Rm , the space junk hits the moon. Then 

using the values rp = Rm , v = , and R0 = (3 / 2) Rm , Eq. (28.9.22) becomes 0 

2 Gm p ! 9RM 
2 " ! 2 1 " 

% . (28.9.23) f 1# = Gm #$ 2 % p $3R 4R 3R RM & M ' & M M ' 

We can solve Eq. (28.9.23) for f : 

f = 4 / 5 . (28.9.24) 

0/pGm R 

27 



  

   
 

   
 

 

 
         

         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

           
  

 

 
 

 

 
 

 

28.9.4 Example Lowest Energy Solution 

! 
The effective potential energy for a linear restoring central force F = !kr r̂ is given by 

L2 1 2U = + kr .effective 22µr 2 

Find the radius and the energy for the motion with the lowest energy. What type of 
motion does this correspond to? If the energy is slightly greater than the lowest energy, 
what type of motion would that correspond to? 

Solution: 

Taking the derivative of the effective potential with respect to the radius r and setting the 
derivative equal to zero at r0 , 

L2 
! 3 + k r 0 = 0 
µ r0 

1/ 4 
" L2 # r = $0 
& kµ % 

. 
' 

The minimum energy is 
1/ 2 1/ 2 

L2 ! kµ " k ! L2 " U ( ) r = + $eff 0 # 2 $2µ % L & 2 %
# kµ & 

1/ 2 2! L k " 
$ .= # µ% & 

The orbit at this radius is a circle. 
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For a slightly larger energy, the orbit will oscillate about the minimum radius.  Although 
it takes a bit more work to show, and is not part of this problem, the orbit will be an 
ellipse with the origin at the center (not at a focus, as in a Keplerian orbit). 
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28.9.5 Example Effective Potential Energy 

A system of two particles with a reduced mass µ interacts via an attractive central force 
! 
F = !ar 3 r̂ , where r is the relative distance between the two particles. The magnitude of 
the angular momentum for the equivalent one particle problem about the origin is L . 

a)	 Find an expression for the effective potential energy and make a graph of the 
effective potential energy as a function of r . Find an expression for r that 
minimizes the effective potential energy. 

b)	 Indicate by a horizontal line on the graph sketch the total energy that would 
correspond to a constant relative distance r between the two particles. Find an 
expression for this energy. What type of motion does this correspond to for the 
equivalent one-particle problem? 

Solution: 

a) The potential energy associated with the given force, denoted U with no subscript, is 
given by 

r ! ! ! ! r aU = !$r! 0 

F(r") #dr" = $r0 

ar"3 dr" = (r 4 ! r0
4 ) (28.9.25) 

4 

where r0 is the radius at which we choose to set the potential energy equal to zero. While 
we could choose any (finite) value for r0 , for the purposes of making the graph we’ll 
choose r0 = 0 . 

The effective potential energy is then 

L2	 1 a 4 L2 1 
2 .	 (28.9.26) Ueff = U + = r + 

2 µ r 2 4 2 µ r 

From Equation (28.9.26) we see that the effective potential has both an attractive part 
( ! r 4 ) and the “repulsive” part ( ! !1/ r 2 ). A plot of Ueff as a function of r , with, for 
graphing purposes, a = L = µ = 1 is shown below. Plots of U and the repulsive term are 
shown as well; Ueff is the upper curve, blue if viewed in color. 
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Differentiating Equation (28.9.26) and setting the derivative equal to zero at r = rmin 
yields 

2 
3 L 1 a r ! = 0min µ r3 min 

1/ 6 (28.9.27) 
" L2 # r = $ % .min µ a& ' 

In the above plot, with a = L = µ = 1, rmin = 1, consistent with the graph. 

b) Using the value of rmin from (28.9.27) in Equation (28.9.26) yields 

2/3 1/3 2 2 2a ! L " L ! L " U (r )= +$ $eff min 4 %
# µ a & 2µ %

# µ a & 
1/3 4/3 a L ! 1 1 " = + $ (28.9.28) 2/3 # µ % 4 2 & 
1/3 4/3 3 a L 

= 2/3 . 4 µ 

This value is shown as the black horizontal line in the plot below;  with a = L = µ = 1, 
r = 1, U (r )= 3/ 4 .min eff min 
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The motion is a circle of radius rmin = 1. 
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28.9.6 Example Transfer Orbit 

the radius of the orbit is 2R . It is desired to transfer the vehicle to a circular orbit of e 

radius 4R . The mass of the earth is M . e	 e 

A space vehicle is in a circular orbit about the earth. The mass of the vehicle is and m s 

a)	 What is the difference in energy between the outer and inner circular orbits? 

b) An efficient way to accomplish the transfer is to use an elliptical orbit from point 
A at the inner circular orbit at to point B at the outer circular orbit (known as a 
Hohmann transfer orbit). This is accomplished by firing a rocket for a short time 
interval during each change of orbit thus increasing the tangential speed of the 
satellite. What velocity changes are required at the points of intersection, A 
and B ? 

c)	 Assume that the rocket burns fuel at a steady rate and the exhaust speed relative to 
the rocket is u . Using our early results for the rocket equation, how much fuel is 
burned at each of the rocket firings at the points of intersection, A and B ? 
Assume that before the firing at A , the mass of the rocket is m0 . 
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Solution:
 

a) Because m << m , the reduced mass µ ! m . The total mechanical energy is the sum
 s p s

of the kinetic and potential energies, 

E = K +U 
(28.9.29) 

. 2 s e 
s 

1 
2 

m M m v G 
r 

= ! 

For a circular orbit, the orbital speed and orbital radius must be related by the radial 
component of Newton’s Second Law 

m M v2 

!G s e = !m . (28.9.30) 2 sr r 

We can rewrite Eq. (28.9.30) as 

1 2 1 m s M em v = G . (28.9.31) 
2 s 2 r 

Substituting Eq. (28.9.31) into Equation (28.9.29) gives 

1 m M m M 1 m M 1s e s e s e =E = G ! G = ! G U r ( ) . (28.9.32) 
2 r r 2 r 2 

In moving from a circular orbit of radius 2R e to an orbit of radius 4R e , the total energy 
increases, as the energy becomes less negative.  The change in energy is 

!E = E (r = 4R )" E (r = 2Re )e 

1 m M # 1 m M $ s e 
% 

s e 
&= " G " " G (28.9.33) 

2 4R 2 2Re ' e ( 
1 m M s e= G . 
8 Re 

b) The satellite must increase its speed at point A in order to move to the larger orbit 
radius and increase its speed again at point B to stay in a circular orbit. Denote the 
satellite speed at point A while in the circular orbit as vA, i and after the speed increase (a 

“rocket burn”) as vA, f . Similarly, denote the satellite’s speed when it first reaches point 

B as vB, i and the speed of the satellite in the circular orbit at point B as vB, f . The 

speeds vA, i and vB, f are given by Equation (28.9.31). 
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While the satellite is moving from point A to point B (that is, during the transfer, after 
the first burn and before the second), both mechanical energy and angular momentum are 
conserved.  Conservation of energy relates the speeds and radii by 

1 m M 1 m M 2 s e 2 s e . (28.9.34) ms (v , ) ! G = ms (vB i , ) ! G 
2 A f 2Re 2 4Re 

Conservation of angular momentum relates the speeds and radii by 

m v A f (2 R ) = m v , (4 R ) ! v , = 2 vB i . (28.9.35) s , e s B i e A f , 

Substitution of Equation (28.9.35) into Equation (28.9.34) yields, after minor algebra, 

G M 2 
3 

GM 
v = e , vB, i = e . (28.9.36) A, f R R e 

1
6 e 

Equation (28.9.31) gives 

G M 1 
2 

G M 
v = e , vB, f = e . (28.9.37) A, i R R e 

1
4 e 

Thus the change in speeds at the respective points is given by 

# 
= (28.9.38) !vA = vA, f " vA, i % 
$ 

2 
3 
" 

1 
2 

& 

'
( 

G M e 

R e 

and 
# 

= . (28.9.39) !vB = vB, f " vB, i % 
$ 

1 
4 
" 

1 
6 

& 

'
( 

G M e 

R e 

Note that at both points, the speed must increase. 

c) Recall from our rocket equation (add correct link W08D2 Worked Example Rocket 
Problem) that the change in the rocket speed is given by 

$ ' m
!v " v # v = u ln 0 

) (28.9.40) r r , f r ,0 & 
% m0 # !mf (

where the mass of the rocket after the burn is m = m0 ! "mf with !mf > 0 the amount r , f 

of fuel that is necessary to burn in order to increase the speed by !vr . We can write Eq. 
(28.9.40) as 
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"v # m0 ! "mf 
& 

! r = ln % ( . (28.9.41) 
u $ m0 '

Exponentiating both sides yields 
m ! "m

!"v / u 0 fe r = . (28.9.42) 
m0 

We can now solve for !mf : 

!mf = m0 (1" e "!vr / u ) . (28.9.43) 

So for the first firing at point A we have that 

"!vA / u )!m = m (1" e (28.9.44) f , A 0 

where !vA is given by Eq. (28.9.38). The amount of fuel after the firing is then 

!"vA / um = m e (28.9.45) 0, B 0

The amount of fuel burned during the second firing at point B is then 

"!vB / u ) = m "!vA /u (1" e"!vB / u )!m = m (1" e e (28.9.46) f , B 0,B 0

where !vB is given by Eq. (28.9.39). 
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Chapter 28 Appendices 

28.A: Derivation of the Orbit Equation 
Two presentations of the result of Equation (28.5.13) 

28.B: Properties of Elliptical Orbits 
The dynamical properties of objects in elliptical orbits 

28.C: Analytic Geometric Properties of Ellipses 
Demonstrating how the results of Appendices 17.A and 17.B are consistent with 
more familiar representations of ellipses 

28.D: Even More on Kepler Orbits 
Using geometry, vector algebra, but minimal calculus to find the orbit equation, 
introducing the Laplace-Runge-Lenz vector. 

Appendix 28.A: Derivation of the Orbit Equation Using 
Energy Methods 

Consider the reduced body with reduced mass given by Equation (28.3.1), orbiting about 
a central point under the influence of a radially attractive force given by Equation 
(28.3.3). Since the force is conservative, the potential energy with choice of zero 
reference point U ( ) ! = 0 is given by 

Gm m ( ) = ! 1 2 . (28.A.1) U r 
r 

The total energy E is constant, and the sum of the kinetic energy and the potential 
energy is 

Gm m 21 2 1E = µ v ! . (28.A.2) 
2 r 

The kinetic energy term, µv2 / 2 , has the reduced mass and the relative speed v of the 
two bodies.  The velocity is cylindrical coordinates is given by  (add link) 

ˆ! r̂ + v !,v = vrad tan 

" dr % 
2 

" d! % 
2 (28.A.3) 

2 2 2v = vrad + vtan = + r$ ' $ ' # dt & # dt & 

where vrad = dr / dt and vtan = r d / dt ) . Equation (28.A.2) then becomes ( ! 
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( 2 2 +1 ! dr $ ! d' $ G m1 m2E = µ * + r - . . (28.A.4) # & # &2 *" dt % " dt % - r
) , 

The magnitude of the angular momentum with respect to the center of mass is 

L = µ r v tan = µ r 2 d! . (28.A.5) 
dt 

We shall explicitly eliminate the ! dependence from Equation (28.A.4) by using our 
expression in Equation (28.A.5), 

d! L . (28.A.6) = 
dt µ r 2 

The mechanical energy as expressed in Equation (28.A.4) then becomes 

" 21 ! dr 
2 1 L Gm m 1 2 . (28.A.7) E = µ + #$2 & dt '% 2 µ r 2 r 

Equation (28.A.7) is a separable differential equation involving the variable r as a 
function of time t and can be solved for the first derivative dr / dt , 

1 
2dr ! 1 L2 Gm m " 1 2 . (28.A.8) = +$dt 

2 
µ & 
E # 

2 µ r 2 r % 
' 

Instead of solving for the position of the reduced body as a function of time, we 
shall find a geometric description of the orbit by finding r(!) . We first divide Equation 
(28.A.6) by Equation (28.A.8) to obtain 

Ld! 
d! dt µ r 2 . (28.A.9) = = 
dr dr 1 1 

" 1 L Gm m #" 2 #2 2 
1 2

2 
dt E $ +& % &% 

' µ ( ' 2 µ r 2 r ( 

The variables r and ! are separable; 

(1 / r 2 )d! = 1/ 2 dr . (28.A.10) 
L 
2µ # L2 G m m &

1 2E " +% 2 ($ 2µ r r '
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What follows involves a good deal of hindsight, allowing selection of convenient 
substitutions in the math in order to get a clean result. First, note the many factors of the 
reciprocal of r . Make the substitution u = 1/ r , du = !(1/ r 2 ) dr , with the result 

du d! = " 
2 
L 

µ 2 1/ 2 . (28.A.11) 
# L 2 $ u + Gm m u 1 2 &% E " 

2µ' ( 

Experience in evaluating integrals suggests that we make the absolute value of the factor 
multiplying u2 inside the square root equal to unity. That is, multiplying numerator and 
denominator by 2µ / L , 

du . (28.A.12) d! = " 2 / L2 )u)1/ 2 (2µE / L2 " u + 2(µG m1 m2 

As both a check and a motivation for the next steps, note that the left side (d! ) of 
Equation (28.A.12) is dimensionless, and so the right side must be. This means that the 
factor of µGm m / L2 in the square root must have the same dimensions as u , or 1 2

length!1 ; so, define 

r0 ! L2 / µG m1 m2 . (28.A.13) 

a quantity we previously encountered in Eq. (28.5.10) called the semilatus rectum. The 
differential equation then becomes 

dud! = " 2 )1/ 2 (2µE / L2 " u + 2u / r0 

du 
= " 2 2 2 )1/ 2 (2µE / L2 + 1 / r " u + 2u / r " 1 / r0 0 0 (28.A.14) 

du 
= " 2 )2 )1/ 2 (2µE / L2 + 1 / r0 " (u " 1 / r0 

r0 du 
= " .2 / L2 1)2 )1/ 2 (2µEr0 + 1" (r0 u " 

Next, we note that the combination of terms 2µEr 0
2 / L2 +1 is dimensionless, so define 

! = 1+ 2µEr0 
2 / L2 (28.A.15)
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a quantity we also previously encountered (Eq. (28.5.12)) called the eccentricity. The last 
expression in is then 

r0 du 
. (28.A.16) d! = " 

1)2 )1/ 2 (# 2 " (r0 u " 

From here, we’ll combine a few calculus steps, going immediately to the substitution 
r u #1 = ! cos " , r du = #! sin " d" , yielding 0 0 

"# sin$ d$ 
= d$ . (28.A.17) d! = " 

2 $ )1/ 2 (# 2 " # 2 cos

We can now integrate and find that 

! = d! = d# = # + constant (28.A.18) " " 

We have a choice in selecting the constant, and if we pick ! = " $# , ! = " +# , 
cos ! = #cos " , the result is 

1 r0r = = (28.A.19) 
u 1#! cos " 

agreeing with our result in Equation (28.5.13). 

Note that if we chose the constant of integration to be zero, the result would be 

1 r 
= 0r = (28.A.20) 

u 1+ ! cos " 

which is the same trajectory reflected about the “vertical” axis in Figure 28.3, indeed the 
same as rotating by ! . 

Appendix 28.B: Properties of an Elliptical Orbit 

We now consider the special case of an elliptical orbit. 
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Figure 28.B.1 Ellipse. 

In Figure 28.B.1, let a denote the semimajor axis, b denote the semiminor axis and x0 
denote the distance from the center of the ellipse to the origin of our coordinate system 
(r,!) . We shall now express the parameters a , b and x0 in terms of the constants of the 
motion L , E , µ , m1 and m2 . 

The semimajor axis: 

See Equation (28.A.19) above. The major axis A = 2a is given by 

A = 2a = r + r (28.B.1) max min 

where the distance of furthest approach occurs when ! = 0 , hence 

r0r = r(! = 0) = (28.B.2) max 1" # 

and the distance of nearest approach occurs when ! = " , hence 

r0= r(! = " ) = . (28.B.3) rmin 1+ # 

Figure 28.B.2: nearest and furthest approach 

Thus 
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1 " r0 r0 # r0a = + = . (28.B.4) $2 '1&! 1+ ! %( 1&! 2 

The semilatus rectum r0 can be re-expressed in terms of the semimajor axis and the 
eccentricity, 

r0 = a(1! " 2 ) . (28.B.5) 

We can now express the distance of nearest approach, Equation (28.B.3), in terms of the 
semimajor axis and the eccentricity, 

r0 a(1" ! 2 )
= = a(1" !) . (28.B.6) rmin = 

1+ ! 1+ ! 

In a similar fashion the distance of furthest approach is 

r0 a(1! " 2 )r = = = a(1+ " ) . (28.B.7) max 1! " 1! " 

Figure 17.B.2 shows the distances of nearest and furthest approach. Using our results for 
r0 and ! from Equations  (17.3.12) and (17.3.13), we have for the semimajor axis 

L2 1 a = 
µ Gm1 m2 (1! (1+ 2 E L2 / µ(G m m )2

)) 1 2 . (28.B.8) 
G m1 m2= ! 

2E 

and so the energy is determined by the semimajor axis, 

Gm m E = ! 1 2 . (28.B.9) 
2a 

The angular momentum is related to the semilatus rectum r0 by Equation (17.3.12). 
Using Equation (28.B.5) for r0 , we can express the angular momentum (28.B.3) in terms 
of the semimajor axis and the eccentricity, 

L = µ Gm1 m2r0 = µ Gm1 m2a(1! " 2 ) . (28.B.10)
 

Note that 
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(1! " 2 ) = 
L 

µ Gm1 m2a 
. (28.B.11) 

Location x0 of the center of the ellipse: 

From Figure 28.B.1, the distance from a focal point to the center of the ellipse is 

x = r ! a . (28.B.12) 0 max 

Using Equation (28.B.7) for rmax , we have that 

x0 = a(1 + ! ) "! = ! a. (28.B.13) 

Thus, from Equations (17.3.12), (28.B.13) and (28.B.8), 

G m1 m2x0 = ! a = " (1+ 2E L2 / µ(G m1 m2 )2 ) . (28.B.14) 
2E 

The semi-minor axis: 

From Figure 28.B.1, 

(28.B.15) 

where 

r0 , (28.B.16) r = b 1#! cos " b 

which can be rewritten as 

r # r ! cos " = r . (28.B.17) b b b 0 

Note that from Figure 28.B.1, 

x0 = rb cos !b , (28.B.18) 

so that 

rb = r0 + ! x0 . (28.B.19) 

b = (rb 
2 ! x0 

2 ) 
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Substituting Equation (28.B.13) for x0 and Equation (28.B.5) for r0 into 
Equation (28.B.19) yields 

rb = a(1! " 2 ) + a" 2 = a . (28.B.20) 

The fact that rb = a is a well-known property of an ellipse reflected in the geometric 
construction, that the sum of the distances from the two foci to any point on the ellipse is 
a constant. Thus the semi-minor axis b becomes 

b = rb 
2 ! x0

2 = a2 ! " 2a2 = a 1! " 2 . (28.B.21) 

Using Equation (28.B.11) for 1"! 2 , we have for the semi-minor axis 

2 
1 2/b aL Gm m µ= . (28.B.22)
 

We can now use Equation (28.B.8) for a in the above expression, yielding 

Gm m 12 1 2 (28.B.23) b = aL / µ Gm m = L ! / µ Gm m = L !1 21 2 2E 2µE 

Speeds at nearest and furthest distances: 

At nearest approach the velocity vector is tangent to the orbit, so the angular 
momentum is 

L = µrmin vp (28.B.24) 

and the speed at nearest approach is 

vp = L / µrmin . (28.B.25) 

Figure 28.B.3 Speeds at nearest and furthest approach 
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Using Equation (28.B.10) for the angular momentum and Equation (28.B.6) for rmin , 
Equation (28.B.25) becomes 

v p = 
L 

µrmin 

= 
µ Gm1 m2 (1! " 2 ) 
µa(1! ") 

= 
Gm1 m2 (1! " 2 ) 
µa(1! ")2 = 

Gm1 m2 (1+ ") 
µa(1! ") 

.(28.B.26) 

A similar calculation show that the speed va at furthest approach, 

v a = 
L 

µr max 

= 
µ Gm1 m2 (1! " 2 ) 

µa(1+ ") 
= 

Gm1 m2 (1! " 2 ) 
µa(1+ ")2 

= 
Gm1 m2 (1! ") 
µa(1+ ") 

.(28.B.27) 

Appendix 28.C: Analytic Geometric Properties of Ellipses 

Consider Equation (28.5.18), and for now take ! < 1 , so that the equation is that of an 
ellipse. It takes some, but not a great deal, of algebra to put this into the more 
familiar form 

2(x ! x )2 y0 
2 2 = 1 (28.C.1) + 
a b 

where the ellipse has axes parallel to the x and y coordinate axes, center at (x0 , 0) , 
semimajor axis a and semiminor axis b . 

We rewrite Equation (28.5.18) as 

2 2 
2 2! r0 y r0x " x + = . (28.C.2) 2 2 21"! 1"! 1"! 

We next complete the square, 

2 2 22"r0 " 2r0 y2 r0 " 2r0=x2 ! 
1 ! " 2 

x + 
(1 ! " 2 )2 

+ 
1 ! " 2 1 ! " 2 

+ 
(1 ! " 2 )2 

. (28.C.3) 
# "r0 & 

2 y2 r0
2 

$
x ! 
1 ! " 2 '( 

+ 
1 ! " 2 

=% (1 ! " 2 )2 

We now multiply each side by the factor (1 ! " 2 )2 / r0
2 yielding 

# "r0 & 
2 (1 ! " 2 )2 y2 (1 ! " 2 )2 

= 1 (28.C.4) x ! + 2 )% 2 ( 2$ 1 ! " ' r0 r0
2 (1 ! "

Eq. (28.C.4) simplifies to 
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2 
# "r0 & 
% x ! 2 ($ 1 ! " ' y2 

2 2 = 1 (28.C.5) + 
# r0 & # r0 

&
 
(1 ! " 2 )' 1 ! " 2
%$ (
 %$ ('

The last expression in (28.C.3) is the equation of an ellipse 

(x ! "a)2 y2 

a2 
+ 
b2 

= 1 (28.C.6) 

with semimajor axis 
r a = 0 

2 , (28.C.7) 
1"! 

semiminor axis 

b =
 0 
21 

r 
!" 

=
 1 2 (28.C.8)
 "!
a 

and center at (!r0 / (1" ! 2 ), 0) = (!a, 0) , as found in Equation (28.B.13). 

Appendix 28.D: Even More on Kepler Orbits 

We’ve seen so far that for a Kepler Orbit, we have two constants of the motion: the 
angular momentum and the total energy. Since the angular momentum is a vector with 
three components, these constitute a total of four scalar constants of the motion. The 
Kepler Problem has six “degrees of freedom” (three position, three velocity), and so we 
expect to be able to find two more scalar constants of the motion. 

We might expect to be able to further identify any orbit by a vector in the plane of the 
orbit, perpendicular to the angular momentum, and this is indeed the case. Symmetry 
suggests that this vector would be along the major axis, and we’ll see that this is the case 
as well. What follows uses a good deal of vector algebra, but minimal calculus, and leads 
to the orbit equation in a surprisingly simple form. 

We’ll need two results from vector algebra that we haven’t had to use yet. Specifically, !! !for vectors a , b and c , we have 

!a
! 
b !c

!
b !a "
!c !c !a

! 
b

!
b

! ( 
( 

) = 

) = 

(

!a
) #

) = 

)
!
 "
 
!
b).
 

(28.D.1)
 !a !

!c !c !a(
 (
"
 "
 !
 "
 !


!c
!
b

(

These relations are not hard to derive in Cartesian coordinates; the derivations will not be 
reproduced here. As a check, however, note that the vector on the right side of the first 
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! ! ! ! ! !relation is perpendicular to both a and b ! c . If a , b and c are non-coplanar, the 
common magnitude of the scalars in the second relation is the expression for the volume 
of a parallelepiped with the three vectors forming the sides. 

Let’s start with the known constant angular momentum, 

! ! ! ! !L = r !p = µ r ! v (28.D.2) 

and re-express this quantity in a way that will allow us to use Newton’s Laws.  
Specifically, consider the velocity in terms of polar coordinates, 

! dr ˆ dr̂ v = r + r (28.D.3) 
dt dt 

so that the angular momentum can be expressed as 

! " dr̂ % 2 " dr̂ % (28.D.4) L = µ (r r̂) ! r = µ r r̂ !$ ' $ ' # dt & # dt & 

from which ! 
dr̂ 1 L r̂ ! = . (28.D.5) 
dt r 2 µ 

The advantage to this operation is that we now have an explicit scalar factor of 1/ r 2 , 
which can and should be related to the same factor that appears in Newton’s Law of 
Gravitation. However, in order to use that law, we need a vector relation involving r̂ , 
and so we’ll cross r̂ into both sides of Equation (28.D.5), yielding 

! 
! dr̂ " r̂ L r̂ # r̂ # = #$
& dt %' r 2 µ 

2 ! 
(28.D.6) 

dr̂ 1 ! d ! " 
( = ( $ 2 r %# L.
dt Gmm dt 1 2 & ' 

In the above, the first relation in Equation (28.D.1) was used to simplify the left side, and 
Newton’s Law of Gravitation, in the form µ(d 2r ! / dt2 ) = !(Gm1m2 / r 2 )r̂ was used on the 
right side.  Note the cancellation of the factor of the reduced mass µ . 

Equation (28.D.6) may now be integrated to obtain 
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! ! !v ! L r̂ = + A
Gm m 1 2 ! (28.D.7) !! v ! LA = r̂ " ,

Gm m 1 2 

! ! 
where A is a constant vector. Since r̂ is in the plane of the orbit, and L is ! 
perpendicular to the plane of the orbit, A must lie in the plane of the orbit, as indicated ! ˆabove. Further, by considering extreme points of the orbit, where , and hence !v r 

ˆ AL , we see that at these points is in the direction parallel to the major axis.  "!v r 
A ASince is a constant vector, must always be in this direction. By considering the 
A at perihelion (or at any point on the orbit of a circular orbit), we can see that the vector 

Adirection of is that from the perihelion point to the focus; we’ll need this result below, 

! 

! ! ! 

! ! 
! 

! 

when we find the orbit equation. 

! 

! 
The magnitude of A is readily found by calculating 

v # v # 
!
!
 !
 !!! 

v # 
2
 1
A2 r̂ ! r̂ " r̂ ! (A ! A =
 L) +
 L) ! (
 L) .(28.D.8)
 (
=
 

)2Gm1 (
Gm1m2 
m2 

The first dot product is manifestly 1. The middle term, the “cross term,” is found using 
the second relation in Equation (28.D.1), 

!
!
 !
1
 1 L2!!!! v " v) = r " µv) = 

! ! ! ! The third term is most easily evaluated by recalling that v ! L , so that v ! L = vL and 

r̂ ! ( L) = L ! (r̂ " L ! (
 (28.D.9)
 .
 
µ r µ r 

(
!v !
 
! 
L
) " (
!v !
 

! 
L
) = v2 L2 . 
Combining, we see that 

2 1 1 2 L2A2 L2 = 1! + v
Gm1m2 µr (Gm1m2 )2
 

2L2 " 1 Gm1m2 
%
 

= 1+ µv (28.D.10) ' (Gm1m2 )2 µ #$ 2
2 ! 

r &
 

2L2 E
 
= 1+ = ( 2. 

(Gm1m2 )2 µ 

! 
Thus, the constant vector A is directed along the major axis and has magnitude equal to 
the eccentricity. 

! !The orbit equation is now found algebraically by taking the dot product of A and r ; 
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!
 
A !
!
 r = Ar cos" = r̂ ! 1
 !
 

L) . (28.D.11)
 r # r ! (v $ 

! 

1 2 

Gm m µ1 2 

!! 

The first term is merely the magnitude of the position vector. The second term, r 
ˆrepeating the calculation of Equation (28.D.9) with instead of , is r r 

L (28.D.12) r= ,0 

with the result 
Ar (28.D.13) ! " ! #r r rcos cos = = .0 

Solving for gives the orbit equation in the form r 

! 

r r = 0 . (28.D.14) 
1#! cos " 

! 
It should be noted that what we call the vector A is a negative scalar multiple of the 
“Laplace-Runge-Lenz” vector (yes, it took three people to come up with this).  
Specifically, the L-R -L vector is in many sources given as 

!! ! ! 
A = p 

! 
! L " µ Gm m 

r 
= "µ Gm m A . (28.D.15) LRL 1 2 1 2r 

! ! ! 
Our choice of the form for A allows A = ! and the direction of A to lead to 

Equation (28.D.11) without introduction of extra minus signs. 

Gm1m2 
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