Central Force Motion

Central Force Problem

Find the motion of two bodies interacting via a central force.
Examples:

Gravitational force (Kepler problem):

Linear restoring force:

$$
\overrightarrow{\mathbf{F}}_{1,2}(r)=-k r \hat{\mathbf{r}}
$$

Two Body Problem: Center of Mass Coordinates

Center of mass

$$
\overrightarrow{\mathbf{R}}_{c m}=\overrightarrow{\mathbf{r}}_{1}-\frac{m_{1} \overrightarrow{\mathbf{r}}_{1}+m_{2} \overrightarrow{\mathbf{r}}_{2}}{m_{1}+m_{2}}
$$

Relative Position Vector

$$
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}=\overrightarrow{\mathbf{r}}_{1}^{\prime}-\overrightarrow{\mathbf{r}}_{2}^{\prime}
$$

Reduced Mass

$$
\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)
$$

Position of each object

$$
\overrightarrow{\mathbf{r}}_{1}^{\prime}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{R}}_{c m}=\overrightarrow{\mathbf{r}}_{1}-\frac{m_{1} \overrightarrow{\mathbf{r}}_{1}+m_{2} \overrightarrow{\mathbf{r}}_{2}}{m_{1}+m_{2}}=\frac{m_{2}\left(\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right)}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \overrightarrow{\mathbf{r}} \quad \overrightarrow{\mathbf{r}}_{2}^{\prime}=-\frac{\mu}{m_{2}} \overrightarrow{\mathbf{r}}
$$

Reduction of Two Body Problem

Newton's Second Law

$$
\mathrm{F}_{1,2} \hat{\mathbf{r}}=m_{1} \frac{d^{2} \overrightarrow{\mathbf{r}}_{1}}{d t^{2}} \quad \mathrm{~F}_{2,1} \hat{\mathbf{r}}=m_{2} \frac{d^{2} \overrightarrow{\mathbf{r}}_{2}}{d t^{2}}
$$

Divide by mass

$$
\frac{\mathrm{F}_{1,2}}{m_{1}} \hat{\mathbf{r}}=\frac{d^{2} \overrightarrow{\mathbf{r}}_{1}}{d t^{2}} \quad \frac{\mathrm{~F}_{2,1}}{m_{2}} \hat{\mathbf{r}}=\frac{d^{2} \overrightarrow{\mathbf{r}}_{2}}{d t^{2}}
$$

$$
\left(\frac{\mathrm{F}_{1,2}}{m_{1}}-\frac{\mathrm{F}_{2,1}}{m_{2}}\right) \hat{\mathbf{r}}=\frac{d^{2}\left(\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right)}{d t^{2}}=\frac{d^{2} \mathbf{r}}{d t^{2}}
$$

$$
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}
$$

Use Newton's Third Law (in components)

$$
\mathrm{F}_{1,2}=-\mathrm{F}_{2,1}
$$

Summary

$$
\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \mathrm{F}_{1,2} \hat{\mathbf{r}}=\frac{d^{2} \overrightarrow{\mathbf{r}}}{d t^{2}} \Rightarrow \mathrm{~F}_{1,2} \hat{\mathbf{r}}=\mu \frac{d^{2} \mathbf{r}}{d t^{2}}
$$

Reduction of Two Body Problem

Reduce two body problem to one body of reduced mass μ moving about a central point O under the influence of gravity with position vector corresponding to the relative position vector from object 2 to object 1

Solving the problem means finding the distance from the origin $r(t)$ and angle $\theta(t)$ as functions of time

Equivalently, finding $r(\theta)$ as a function of angle θ

$$
\overrightarrow{\mathbf{F}}_{1,2}=\mu \frac{d^{2} \overrightarrow{\mathbf{r}}}{d t^{2}}
$$

Interpretation of Solution: Motion about Center of Mass

Knowledge of $\quad \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{1}^{\prime}-\overrightarrow{\mathbf{r}}_{2}^{\prime}$ determines the motion of each object about center of mass with position.

$$
\overrightarrow{\mathbf{r}}_{1}^{\prime}=\frac{\mu}{m_{1}} \overrightarrow{\mathbf{r}} \quad \overrightarrow{\mathbf{r}}_{2}^{\prime}=-\frac{\mu}{m_{2}} \overrightarrow{\mathbf{r}}
$$

Checkpoint Problem: Angular Momentum

The angular momentum about the point O of the "reduced body"

1. is constant.
2. changes throughout the motion because the speed changes.
3. changes throughout the motion
 because the distance from O changes.
4. changes throughout the motion because the angle θ changes.
5. Not enough information to decide.

Angular Momentum about 0

Torque about O :
$\vec{\tau}_{O}=\overrightarrow{\mathbf{r}}_{O} \times \overrightarrow{\mathbf{F}}_{1,2}(r)=r \hat{\mathbf{r}} \times F_{1,2}(r) \hat{\mathbf{r}}=\overrightarrow{\mathbf{0}}$
Velocity $\quad \overrightarrow{\mathbf{v}}=\frac{d r}{d t} \hat{\mathbf{r}}+r \frac{d \theta}{d t} \hat{\boldsymbol{\theta}}$

Angular Momentum

$$
\begin{aligned}
& \overrightarrow{\mathbf{L}}_{O}=\overrightarrow{\mathbf{r}} \times \mu \overrightarrow{\mathbf{v}}=r \hat{\mathbf{r}} \times \mu\left(\frac{d r}{d t} \hat{\mathbf{r}}+r \frac{d \theta}{d t} \hat{\boldsymbol{\theta}}\right) \\
& \overrightarrow{\mathbf{L}}_{O}=\mu r^{2} \frac{d \theta}{d t} \hat{\mathbf{k}} \\
& L \equiv L_{z}=\mu r^{2} \frac{d \theta}{d t}
\end{aligned}
$$

Useful Relation:

$$
\frac{L^{2}}{2 \mu}=\frac{1}{2 \mu}\left(\mu r^{2} \frac{d \theta}{d t}\right)^{2}=\frac{1}{2} \mu\left(r \frac{d \theta}{d t}\right)^{2}
$$

Recall: Potential Energy

Find an expression for the potential energy of the system consisting of the two objects interacting through the central forces given by
a) Gravitational force

$$
\overrightarrow{\mathbf{F}}_{1,2}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}}
$$

b) Linear restoring force

$$
\overrightarrow{\mathbf{F}}_{1,2}=-k r \hat{\mathbf{r}}
$$

Gravitation:

$$
\Delta U_{g r a v}=-\int_{r=r_{0}}^{r=r_{f}}-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} \cdot d \overrightarrow{\mathbf{r}}=-\int_{r=r_{0}}^{r=r_{r}}-\frac{G m_{1} m_{2}}{r^{2}} d r=-G m_{1} m_{2}\left(\frac{1}{r_{f}}-\frac{1}{r_{i}}\right)
$$

Linear restoring: $\quad \Delta U_{\text {spring }}=-\int_{r=r_{0}}^{r=r_{f}}-k r \mathbf{r} \cdot d \overrightarrow{\mathbf{r}}=\frac{1}{2} k\left(r_{f}^{2}-r_{0}^{2}\right)$

Checkpoint Problem: Energy

The mechanical energy

1. is constant.
2. changes throughout the motion because the speed changes.
3. changes throughout the motion because the distance from O
 changes.
4. is not constant because the orbit is not zero hence the central force does work.
5. Not enough information to decide.

Mechanical Energy and Effective Potential Energy

There are no non-conservative forces acting so the mechanical energy is constant.

Kinetic Energy

$$
K=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}+\frac{1}{2} \mu\left(r \frac{d \theta}{d t}\right)^{2}=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}+\frac{L^{2}}{2 \mu}
$$

Mechanical Energy $\quad E=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}+\frac{1}{2} \frac{L^{2}}{\mu r^{2}}+U(r) \equiv K_{\text {effective }}+U_{\text {effective }}$
Effective Potential Energy

$$
U_{\text {effective }}=\frac{L^{2}}{2 \mu r^{2}}+U(r)
$$

Effective Kinetic Energy

$$
K_{\text {effective }}=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}
$$

Force and Potential Energy

Effective Potential Energy

Repulsive Force

$$
F_{r e p}=-\frac{d}{d r} \frac{L^{2}}{2 \mu r^{2}}=\frac{L^{2}}{\mu r^{3}}
$$

Central Force

$$
F_{r}=-\frac{d U(r)}{d r}
$$

Effective Force

$$
\overrightarrow{\mathbf{F}}_{e f f}=-\frac{d U_{e f f}(r)}{d r} \hat{\mathbf{r}}=\left(\frac{L^{2}}{\mu r^{3}}-\frac{d U(r)}{d r}\right) \hat{\mathbf{r}}
$$

Reduction to One Dimensional Motion

Reduce the one body problem in two dimensions to a one body problem moving only in the radial direction but under the action of two forces: a repulsive force and the central force

$$
\stackrel{\rightharpoonup}{\mathbf{F}}_{\text {eff }}=-\frac{d U_{e f f}(r)}{d r} \hat{\mathbf{r}}=\left(\frac{L^{2}}{\mu r^{3}}-\frac{d U(r)}{d r}\right) \hat{\mathbf{r}}=\mu \frac{d^{2} \mathbf{\vec { r }}}{d t^{2}}
$$

Reduction to One Dimensional Motion

Reduce the one body problem in two dimensions to a one body problem moving only in the radial direction but under the action of two forces: a repulsive force and the central force

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{e f f}=-\frac{d U_{e f f}(r)}{d r} \hat{\mathbf{r}}=\left(\frac{L^{2}}{\mu r^{3}}-\frac{G m_{1} m_{2}}{r^{2}}\right) \hat{\mathbf{r}} \\
\mu \frac{d^{2} r}{d t^{2}}=\frac{L^{2}}{\mu r^{3}}-\frac{G m_{1} m_{2}}{r^{2}}
\end{gathered}
$$

Central Force Motion: constants of the motion

Total mechanical energy E is conserved because the force is radial and depends only on r and not on θ

Angular momentum L is constant because the torque about origin is zero

The force and the velocity vectors determine the plane of motion

Linear Restoring Force

Central Force

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{1,2}=-k r \hat{\mathbf{r}} \\
E=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}+\frac{1}{2} \frac{L^{2}}{\mu r^{2}}+\frac{1}{2} k r^{2}=K_{\text {effective }}+U_{\text {effective }}
\end{gathered}
$$

Energy

Angular Momentum

$$
\begin{gathered}
L=\mu r^{2} \frac{d \theta}{d t} \\
K_{\text {effective }}=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}
\end{gathered}
$$

Kinetic Energy

Effective Potential Energy

$$
U_{e f f e c t i v e}=\frac{L^{2}}{2 \mu r^{2}}+\frac{1}{2} k r^{2}
$$

Repulsive Force

Linear Restoring Force

$$
F_{\text {repulsive }}=-\frac{d}{d r}\left(\frac{L^{2}}{2 \mu r^{2}}\right)=\frac{L^{2}}{\mu r^{3}}
$$

$$
F_{\text {spring }}=-\frac{d U_{\text {spring }}}{d r}=-k r
$$

Energy Diagram: Graph of Effective Potential Energy vs. Relative Separation

For $E>0$, the relative separation oscillates varies between

$$
r_{\min } \leq r \leq r_{\max }
$$

The effective potential has a minimum at r_{0}

Checkpoint Problem: Lowest Energy Solution

The effective potential energy is

$$
U_{\text {effective }}=\frac{L^{2}}{2 \mu r^{2}}+\frac{1}{2} k r^{2}
$$

Find the radius and the energy for the lowest energy orbit. What type of motion is this orbit?

Orbit Equation: Isotropic Harmonic Oscillator

A special solution of the equation of motion for a linear restoring force

$$
\mu \frac{d^{2} \mathbf{r}}{d t^{2}}=-k r \hat{\mathbf{r}}
$$

is given by $\quad \overrightarrow{\mathbf{r}}(t)=x(t) \hat{\mathbf{i}}+y(t) \hat{\mathbf{j}}$
with

$$
\begin{aligned}
& x(t)=x_{0} \sin (\omega t) \\
& y(t)=y_{0} \cos (\omega t)
\end{aligned}
$$

where for the case shown in the figure with

$$
y_{0}<x_{0} \quad r_{\min }=y_{0} \quad r_{\max }=x_{0}
$$

The solution for $\overrightarrow{\mathbf{r}}(t)$ is an ellipse centered at the origin

Summary: Kepler Problem

- Reduced mass

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
L=\mu r^{2} \frac{d \theta}{d t}
$$

- Kinetic Energy

$$
K=\frac{1}{2} \mu \nu^{2}=\frac{1}{2} \mu\left(\left(\frac{d r}{d t}\right)^{2}+\left(r \frac{d \theta}{d t}\right)^{2}\right)=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}+\frac{1}{2} \frac{L^{2}}{\mu r^{2}}
$$

- Potential energy

$$
U(r)=-\frac{G m_{1} m_{2}}{r}
$$

- Energy

$$
E=K+U(r)=\frac{1}{2} \mu\left(\frac{d r}{d t}\right)^{2}+\frac{1}{2} \frac{L^{2}}{\mu r^{2}}-\frac{G m_{1} m_{2}}{r}=K_{e f f}+U_{e f f}(r)
$$

- Effective Kinetic Energy

$$
K_{e f f}=\frac{1}{2} \mu(d r / d t)^{2}
$$

- Effective Potential Energy

$$
U_{e f f}=\frac{L^{2}}{2 \mu r^{2}}-\frac{G m_{1} m_{2}}{r}
$$

- Effective Repulsive Force

$$
F_{r e p}=-\frac{d U_{r e p}}{d r}=\frac{L}{\mu r^{3}}
$$

- Gravitational Force

$$
F_{g r a v}=-\frac{d U_{g r a v}}{d r}=-\frac{G m_{1} m_{2}}{r^{2}}
$$

Energy Diagram: Graph of Effective Potential Energy vs. Relative Distance

Case 1: Hyberbolic Orbit

$$
E>0
$$

Case 2: Parabolic Orbit

$$
E=0
$$

Case 3: Elliptic Orbit

$$
E_{\min }<E<0
$$

Case 4: Circular Orbit

$$
E=E_{\min }
$$

$$
U_{\text {effective }}=\frac{L^{2}}{2 \mu r^{2}}-\frac{G m_{1} m_{2}}{r}
$$

Checkpoint Problem: Lowest Energy Orbit

The effective potential energy is

$$
U_{\text {effective }}=\frac{L^{2}}{2 \mu r^{2}}-\frac{G m_{1} m_{2}}{r}
$$

Make a graph of the effective potential energy as a function of the relative separation. Find the radius and the energy for the lowest energy orbit. What type of motion is this orbit?

Checkpoint Problem: Circular Orbital Mechanics

A double star system consisting of one star of mass m_{1} and a second star of mass m_{2} are orbiting each other such that the relative separation remains constant $r=R$.
a. Find the ratio of kinetic to potential energy
b. Suppose the orbits remain circular but the relative separation R increases. Do the following quantities increase, remain the same, or decrease: angular momentum, velocity, kinetic energy, potential energy, energy, and eccentricty?

Kepler's Laws

1. The orbits of planets are ellipses; and the center of sun is at one focus

2. The position vector sweeps out equal areas in equal time
3. The period T is proportional to the length of the major axis A to the $3 / 2$ power $T A^{3 / 2}$

Equal Area Law and Conservation of Angular Momentum

Change in area

$$
\Delta A=(1 / 2) r v_{\theta} \Delta t
$$

per time

$$
\frac{\Delta A}{\Delta t}=\frac{1}{2} v_{\theta} r
$$

Angular momentum

$$
L=r \mu v_{\theta}
$$

Equal area law

$$
\frac{\Delta A}{\Delta t}=\frac{L}{2 \mu}
$$

Orbit Equation Solution

Orbit Equation

$$
\mu \frac{d^{2} r}{d t^{2}}=\frac{L^{2}}{\mu r^{3}}-\frac{G m_{1} m_{2}}{r^{2}}
$$

Change of Variables:

$$
u \equiv \frac{1}{r} \Rightarrow \quad \frac{d r}{d \theta}=\frac{d r}{d u} \frac{d u}{d \theta}=-\frac{1}{u^{2}} \frac{d u}{d \theta}
$$

Angular momentum condition:

$$
\frac{d \theta}{d t}=\frac{L}{\mu r^{2}}=\frac{L}{\mu} u^{2}
$$

Chain rule:

$$
\begin{aligned}
& \frac{d r}{d t}=\frac{d r}{d \theta} \frac{d \theta}{d t} \Rightarrow \frac{d r}{d t}=-\frac{1}{u^{2}} \frac{d u}{d \theta} \frac{L}{\mu} u^{2} \\
& \frac{d^{2} r}{d t^{2}}=-\frac{d^{2} u}{d \theta^{2}} \frac{d \theta}{d t} \frac{L}{\mu}=-\frac{d^{2} u}{d \theta^{2}} \frac{L^{2}}{\mu^{2}} u^{2}
\end{aligned}
$$

Second derivative:
One dimensional force equation $\mu \frac{d^{2} r}{d t^{2}}=\frac{L^{2}}{\mu r^{3}}-\frac{G m_{1} m_{2}}{r^{2}}=\frac{L^{2}}{\mu} u^{3}-G m_{1} m_{2} u^{2}$
Result:

$$
-\frac{d^{2} u}{d \theta^{2}} \frac{L^{2}}{\mu^{2}} u^{2}=\frac{L^{2}}{\mu^{2} r^{3}}-\frac{G m_{1} m_{2}}{\mu r^{2}} \Rightarrow \frac{d^{2} u}{d \theta^{2}}=-u+\frac{\mu G m_{1} m_{2}}{L^{2}}
$$

Orbit Equation

Inhomogenous harmonic oscillator equation $\frac{d^{2} u}{d \theta^{2}}+u=\frac{\mu G m_{1} m_{2}}{L^{2}}$
with angle independent solution

$$
u_{0}=\frac{\mu G m_{1} m_{2}}{L^{2}}
$$

Solution: $u-u_{0}=A \cos \left(\theta-\theta_{0}\right) \Rightarrow u=u_{0}\left(1+\frac{A \cos \left(\theta-\theta_{0}\right)}{u_{0}}\right)$
Change variables back with:

$$
\begin{aligned}
& \text { es back with: } \quad r=\frac{1}{u} \quad \frac{1}{u_{0}} \equiv r_{0}=\frac{L^{2}}{\mu G m_{1} m_{2}} \\
& u-u_{0}=A \cos \left(\theta-\theta_{0}\right) \Rightarrow \frac{1}{r}=\frac{1}{r_{0}}\left(1+r_{0} A \cos \left(\theta-\theta_{0}\right)\right)
\end{aligned}
$$

Constants ${ }_{\left(\varepsilon, \theta_{0}\right)}$ fixed by conditions: choose

$$
\theta_{0}=\pi \quad A=\varepsilon / r_{0}
$$

Conclusion:

$$
r=\frac{r_{0}}{1-r_{0} A \cos (\theta)}=\frac{r_{0}}{1-\varepsilon \cos (\theta)}
$$

Eccentricity

Orbit Equation

$$
r=\frac{r_{0}}{1-\varepsilon \cos (\theta)}
$$

Nearest Approach $(\theta=\pi): \quad r_{\text {min }}=\frac{r_{0}}{(1+\varepsilon)}$
Furthest Approach $(\theta=0): \quad r_{\text {max }}=\frac{r_{0}}{(1-\varepsilon)}$
Semi-major axis: $\quad a=\frac{1}{2}\left(r_{\text {min }}+r_{\text {max }}\right)=\frac{r_{0}}{\left(1-\varepsilon^{2}\right)}$

Energy at nearest approach:
$E=U_{e f f}\left(r_{\text {min }}\right)=\frac{L^{2}(1+\varepsilon)^{2}}{2 \mu r_{0}^{2}}-\frac{G m_{1} m_{2}(1+\varepsilon)}{r_{0}} \Rightarrow E=\left(\varepsilon^{2}-1\right) \frac{\mu\left(G m_{1} m_{2}\right)^{2}}{2 L^{2}}=-\frac{G m_{1} m_{2}}{2 a}$
Eccentricity: $\varepsilon=\left(1+\frac{2 L^{2} E}{\mu\left(G m_{1} m_{2}\right)^{2} \mu}\right)^{1 / 2} \Rightarrow \varepsilon=\left(1-\frac{E}{E_{0}}\right)^{1 / 2} \quad E_{0}=\frac{\mu\left(G m_{1} m_{2}\right)^{2}}{2 L^{2}}$

Constants of the Motion: Energy and Angular Momentum

Angular momentum

$$
L=\left(r_{0} \mu G m_{1} m_{2}\right)^{1 / 2}
$$

where r_{0} is the radius of the circular orbit
Energy:

$$
E=E_{\min }\left(1-\varepsilon^{2}\right)=-\frac{\mu\left(G m_{1} m_{2}\right)^{2}}{2 L^{2}}\left(1-\varepsilon^{2}\right)
$$

where $E_{\text {min }}$ is the energy of the circular orbit

$$
E_{\min }=\left.\left(U_{\text {efficitive }}\right)\right|_{r=r_{0}}=\frac{1}{2} U_{g r a v u_{r=r_{0}}}=-\frac{G m_{1} m_{2}}{2 r_{0}}=-\frac{\mu\left(G m_{1} m_{2}\right)^{2}}{2 L^{2}}
$$

and ε is the eccentricity

$$
\varepsilon=\left(1+\frac{2 E L^{2}}{\mu\left(G m_{1} m_{2}\right)^{2}}\right)^{1 / 2}=\left(1-\frac{E}{E_{\min }}\right)^{1 / 2}
$$

Orbit Equation

Solution:

$$
r=\frac{r_{0}}{1-\varepsilon \cos \theta}
$$

Radius of circular orbit

$$
r_{0}=\frac{L^{2}}{\mu G m_{1} m_{2}}
$$

Energy of circular orbit

$$
E_{\min }=-\frac{1}{2} \frac{\mu\left(G m_{1} m_{2}\right)^{2}}{L^{2}}
$$

Eccentricity

$$
\varepsilon=\left(1+\frac{2 E L^{2}}{\mu\left(G m_{1} m_{2}\right)^{2}}\right)^{1 / 2}=\left(1-\frac{E}{E_{\min }}\right)^{1 / 2}
$$

Orbit Classification:

Case 1: Hyberbolic Orbit $\varepsilon>1$

$$
E>0
$$

Case 2: Parabolic Orbit $\varepsilon=1$

$$
E=0
$$

Case 3: Elliptic Orbit $0<\varepsilon<1$

$$
E_{\min }<E<0
$$

Case 4: Circular Orbit $\varepsilon=0$

$$
E=E_{\min }
$$

$$
U_{\text {effective }}=\frac{L^{2}}{2 \mu r^{2}}-\frac{G m_{1} m_{2}}{r}
$$

Properties of Ellipse

Eccentricity

$$
\varepsilon=\left(1+2 E L^{2} / \mu\left(G m_{1} m_{2}\right)^{2}\right)^{1 / 2}
$$

Semi-Major axis

$$
a=-\frac{G m_{1} m_{2}}{2 E}
$$

Semi-Minor axis

$$
b=a \sqrt{1-\varepsilon^{2}}
$$

$$
r=\frac{r_{0}}{1-\varepsilon \cos \theta}
$$

Area

$$
A=\pi a b=\pi a^{2} \sqrt{1-\varepsilon^{2}}
$$

Location of the center of the ellipse

$$
x_{0}=\varepsilon a
$$

Properties of an Elliptic Orbit

Energy

$$
E=-\frac{G m_{1} m_{2}}{2 a}
$$

Angular Momentum

$$
L=\sqrt{\mu G m_{1} m_{2} a\left(1-\varepsilon^{2}\right)}
$$

Nearest Approach $(\theta=\pi)$:

$$
r_{\min }=a(1-\varepsilon)
$$

Speed

$$
v_{p}=\frac{L}{\mu r_{\min }}=\frac{L}{\mu a(1-\varepsilon)}
$$

$$
r=\frac{r_{0}}{1-\varepsilon \cos (\theta)}
$$

Furthest Approach ($\theta=0$):

$$
r_{\max }=a(1+\varepsilon)
$$

$$
r_{0}=\frac{L^{2}}{\mu G m_{1} m_{2}}
$$

Speed

$$
v_{a}=\frac{L}{\mu r_{\max }}=\frac{L}{\mu a(1+\varepsilon)}
$$

$$
\varepsilon=\left(1+2 E L^{2} / \mu\left(G m_{1} m_{2}\right)^{2}\right)^{1 / 2}
$$

Kepler's Laws: Equal Area

Area swept out in time Δt

$$
\begin{aligned}
& \frac{\Delta A}{\Delta t}=\frac{1}{2}\left(r \frac{\Delta \theta}{\Delta t}\right) r+\frac{(r \Delta \theta)}{2} \frac{\Delta r}{\Delta t} \\
& \frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t} \quad \frac{d \theta}{d t}=\frac{L}{\mu r^{2}}
\end{aligned}
$$

Equal Area Law:

$$
\frac{d A}{d t}=\frac{L}{2 \mu}=\frac{1}{2} \sqrt{G\left(m_{1}+m_{2}\right) a\left(1-\varepsilon^{2}\right)}=\text { constant }
$$

Kepler's Laws: Period

Area

$$
A=\pi a b=\pi a^{2} \sqrt{1-\varepsilon^{2}}
$$

Integral of Equal Area Law

$$
\int_{\text {orbit }} \frac{2 \mu}{L} d A=\int_{0}^{T} d t
$$

Period

$$
T=\frac{2 \mu}{L} A=\frac{2 \mu \pi a^{2} \sqrt{1-\varepsilon^{2}}}{L}
$$

Period squared proportional to cube of the major axis but depends on both masses

$$
T^{2}=\frac{4 \mu^{2}}{L^{2}} \pi a^{4}\left(1-\varepsilon^{2}\right)=\frac{4 \pi^{2} \mu^{2} a^{4}\left(1-\varepsilon^{2}\right)}{\mu G m_{1} m_{2} a\left(1-\varepsilon^{2}\right)}=\frac{4 \pi^{2} a^{3}}{G\left(m_{1}+m_{2}\right)}
$$

Stars Nearby Galactic Center

The UCLA Galactic Center Group, headed by Dr. Andrea Ghez, developed an animation of the orbitsof eight stars about the galactic center http://www.astro.ucla.edu/~jlu/gc/images/2004orbit_animfull_sm.gif

Astronomical Data

- Observation data is given in terms of the semi-major axis a and eccentricity ε
- Example: orbit of stars around center of galaxy
$m=\frac{4 \pi^{2} a^{3}}{G T^{2}} \quad 1 A U=1.50 \times 10^{11} \mathrm{~m}$

Star	Period (yrs)	Eccentricity	Semi-major axis $\left(10^{-3}\right.$ arc sec $)$	Periapse (AU)	Apoapse (AU)
S0-2	15.2 $(0.68 / 0.76)$	0.8763 (0.0063)	$120.7(4.5)$	$119.5(3.9)$	$1812(73)$
S0-16	$29.9(6.8 / 13)$	$0.943(0.019)$	$191(24)$	$87(17)$	2970 (560)
S0-19	71 $(35 / 11000)$	$0.889(0.065)$	$340(220)$	$301(41)$	5100 (3600)

Numbers in parentheses are the errors on the given quantities.

Checkpoint Problem: Black Hole Mass

1. Find the mass of the black hole at the center of Milky Way Galaxy using Kepler's 3rd law.
2. What is the ratio of the mass of the black hole to one solar mass?
3. What is the ratio of the mass of the sun to the mass of the earth?
4. How do these ratios compare?

Mass of earth: $6 \times 10^{24} \mathrm{~kg}$
Mass of sun: $2 \times 10^{30} \mathrm{~kg}$
$\mathrm{I} \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$
$m=\frac{4 \pi^{2} a^{3}}{G T^{2}}$
$\mathrm{G}=6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

