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Chapter 9 Uniform Circular Motion 
 
9.1 Introduction 
 
Special cases often dominate our study of physics, and circular motion is certainly no 
exception. We see circular motion in many instances in the world; a bicycle rider on a 
circular track, a ball spun around by a string, and the rotation of a spinning wheel are just 
a few examples. Various planetary models described the motion of planets in circles 
before any understanding of gravitation. The motion of the moon around the earth is 
nearly circular. The motions of the planets around the sun are nearly circular. Our sun 
moves in nearly a circular orbit about the center of our galaxy, 50,000 light years from a 
massive black hole at the center of the galaxy. 
 
 We shall describe the kinematics of circular motion, the position, velocity, and 
acceleration, as a special case of two-dimensional motion. We will see that unlike linear 
motion, where velocity and acceleration are directed along the line of motion, in circular 
motion the direction of velocity is always tangent to the circle. This means that as the 
object moves in a circle, the direction of the velocity is always changing. When we 
examine this motion, we shall see that the direction of change of the velocity is towards 
the center of the circle. This means that there is a non-zero component of the acceleration 
directed radially inward, which is called the centripetal acceleration. If our object is 
increasing its speed or slowing down, there is also a non-zero tangential acceleration in 
the direction of motion. But when the object is moving at a constant speed in a circle then 
only the centripetal acceleration is non-zero. 
 
 In all of these instances, when an object is constrained to move in a circle, there 
must exist a force F

!
 acting on the object directed towards the center.  

 
 In 1666, twenty years before Newton published his Principia, he realized that the 
moon is always “falling” towards the center of the earth; otherwise, by the First Law, it 
would continue in some linear trajectory rather than follow a circular orbit. Therefore 
there must be a centripetal force, a radial force pointing inward, producing this 
centripetal acceleration.  
 
 Since Newton’s Second Law m=F a

! !  is a vector equality, it can be applied to the 
radial direction to yield 
 
 radial radialF ma= . (9.1.1) 
 
9.2 Cylindrical Coordinate System 
 
 We first choose an origin and an axis we call the  z -axis with unit vector ẑ  
pointing in the increasing z-direction. The level surface of points such that  z = zP  define 
a plane. We shall choose coordinates for a point  P  in the plane  z = zP as follows.  
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 One coordinate,  r , measures the distance from the  z -axis to the point P . The 
coordinate  r  ranges in value from   0 ! r ! " . In Figure 9.2.1 we draw a few surfaces that 
have constant values of  r . These `level surfaces’ are circles.  
 

 
 

Figure 9.2.1 level surfaces for the coordinate  r  
 
 Our second coordinate measures an angular distance along the circle. We need to 
choose some reference point to define the angle coordinate. We choose a ‘reference ray’, 
a horizontal ray starting from the origin and extending to +!  along the horizontal 
direction to the right. (In a typical Cartesian coordinate system, our ‘reference ray’ is the 
positive x-direction). We define the angle coordinate for the point  P  as follows. We 
draw a ray from the origin to the point  P . We define the angle !  as the angle in the 
counterclockwise direction between our horizontal reference ray and the ray from the 
origin to the point  P , (see Figure 9.2.2): 
 

 
 

Figure 9.2.2 the angle coordinate 
 
All the other points that lie on a ray from the origin to infinity passing through  P  have 
the same value as ! . For any arbitrary point, our angle coordinate !  can take on values 
from  0 !" < 2# .  In Figure 9.2.3 we depict other `level surfaces’ which are lines in the 
plane for the angle coordinate. The coordinates   (r,!)  in the plane  z = zP  are called polar 
coordinates. 
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Figure 9.2.3 Level surfaces for the angle coordinate 
 
Unit Vectors: We choose two unit vectors in the plane at the point  P  as follows. We 
choose r̂  to point in the direction of increasing  r , radially away from the z-axis. We 
choose !̂  to point in the direction of increasing ! . This unit vector points in the 
counterclockwise direction, tangent to the circle. Our complete coordinate system is 
shown in Figure 9.2.4. This coordinate system is called a ‘cylindrical coordinate system’. 
Essentially we have chosen two directions, radial and tangential in the plane and a 
perpendicular direction to the plane. 

 
Figure 9.2.4 Cylindrical coordinates 

  
   
 If you are given polar coordinates   (r,!)  of a point in the plane, the Cartesian 
coordinates   (x, y) can be determined from the coordinate transformations 
 
   x = r cos!  (9.2.1) 
   y = r sin!  (9.2.2) 
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Conversely, if you are given the Cartesian coordinates  (x, y) , the polar coordinates   (r,!)  
can be determined from the coordinate transformations 
 
   r = +(x2 + y2 )1 2  (9.2.3) 
 1tan ( / )y x! "=  (9.2.4) 
 
Note that   r ! 0 so you always need to take the positive square root. Note also that 
 tan! = tan(! + " ) . Suppose that 0 / 2! "# # , then   x ! 0  and  y ! 0 . Then the point 

  (!x,! y) will correspond to the angle ! + " . 
 
 The unit vectors also are related by the coordinate transformations  
 
 ˆ ˆˆ cos sinr i j! != +  (9.2.5) 
 ˆ ˆ ˆsin cos! ! != " +i j  (9.2.6) 
 
Similarly  
 
 ˆˆ ˆcos sini r! ! != "  (9.2.7) 
 ˆˆ ˆsin cosj r! ! != +  (9.2.8) 
 
 One crucial difference between polar coordinates and Cartesian coordinates 
involves the choice of unit vectors.  Suppose we consider a different point  S  in the plane. 
The unit vectors in Cartesian coordinates ˆ ˆ( , )S Si j  at the point  S  have the same magnitude 

and point in the same direction as the unit vectors ˆ ˆ( , )P Pi j  at P . Any two vectors that are 
equal in magnitude and point in the same direction are equal; therefore  
 
 ˆ ˆ ˆ ˆ,S P S P= =i i j j  (9.2.9) 

 
 A Cartesian coordinate system is the unique coordinate system in which the set of 
unit vectors at different points in space are equal.  In polar coordinates, the unit vectors at 
two different points are not equal because they point in different directions. We show this 
in Figure 9.2.5. 
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Figure 9.2.5 Unit vectors at two different points in polar coordinates.  

 
Infinitesimal Line Elements: Consider a small infinitesimal displacement d s!  between 
two points  P1 and  P2  (Figure 9.2.6). This vector can be decomposed into  
 
 ˆ ˆˆd dr r rd dz! != + +s k!  (9.2.10) 
 

 
Figure 9.2.6 displacement vector d s!  between two points 

 
 
Infinitesimal Area Element:  
 
Consider an infinitesimal area element on the surface of a cylinder of radius  r  (Figure 
9.2.7).  

 
 

Figure 9.2.7 Area element for a cylinder 
 
The area of this element has magnitude 
 
  dA = rd!dz  (9.2.11) 
 
Area elements are actually vectors where the direction of the vector dA

!
 points 

perpendicular to the plane defined by the area. Since there is a choice of direction, we 
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shall choose the area vector to always point outwards from a closed surface. So for the 
surface of the cylinder, the infinitesimal area vector is 
 
 ˆd rd dz r!=A

!
 (9.2.12) 

 
Consider an infinitesimal area element on the surface of a disc (Figure 9.2.8) in the 
  x-y plane.  

 
 

Figure 9.2.8 Area element for a disc 
 
 
This area element is given by the vector 
 
 ˆd rd dr!=A k

!
 (9.2.13) 

 
Infinitesimal volume element:  
 
An infinitesimal volume element (Figure 9.2.9) is given by 
 
  dV = rd! dr dz  (9.2.14) 
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Figure 9.2.9 Volume element 
 
 
 The motion of objects moving in circles motivates the use of the cylindrical 
coordinate system. This is ideal, as the mathematical description of this motion makes 
use of the radial symmetry of the motion. Consider the central radial point and a vertical 
axis passing perpendicular to the plane of motion passing through that central point. Then 
any rotation about this vertical axis leaves circles invariant (unchanged), making this 
system ideal for use for analysis of circular motion exploiting of the radial symmetry of 
the motion. 
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9.3 Circular Motion: Velocity and Angular Velocity 
 
We can now begin our description of circular motion. In Figure 9.2 we sketch the 
position vector ( )tr!  of the object moving in a circular orbit of radius R . 
 
     

!r(t) = Rr̂  (9.3.1) 
 

 

 
 

Figure 9.2 A circular orbit. 
 
The magnitude of the displacement, !r! , is the represented by the length of the 
horizontal vector !r!  joining the heads of the displacement vectors in Figure 9.3 and is 
given by 
 
 2 sin( / 2)R !" = "r!  (9.3.2) 
 

 
Figure 9.3 Change in position vector for circular motion. 

 
 When the angle !"  is small, we can approximate 
 
 sin( / 2) / 2! !" # " . (9.3.3) 
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This is called the small angle approximation, where the angle !"  (and hence / 2!" ) is 
measured in radians (see Section 1.6). This fact follows from an infinite power series 
expansion for the sine function given by  
 

 
3 51 1sin

2 2 3! 2 5! 2
! ! ! !" " " "# $ # $ # $= % + % &&&' ( ' ( ' (

) * ) * ) *
 . (9.3.4) 

 
When the angle / 2!"  is small, only the first term in the infinite series contributes, as 
successive terms in the expansion become much smaller. For example, when 

/ 2 / 30 0.1! "# = $ , corresponding to 6o, 3 4( / 2) / 3! 1.9 10! "# $ % ; this term in the power 
series is three orders of magnitude smaller than the first and can be safely ignored for 
small angles. 
 
 Using the small angle approximation, the magnitude of the displacement is 
 
 R !" # "r! . (9.3.5) 
 
This result should not be too surprising since in the limit as !"  approaches zero, the 
length of the chord approaches the arc length R !" .  
 
 The magnitude of the velocity, v!v! , is then seen to be proportional to the rate 
of change of the magnitude of the angle with respect to time, 
 

 
0 0 0

lim lim lim
t t t

R dv R R
t t t dt

! ! !
" # " # " #

" " "
$ = = = =

" " "

r
v

!
! . (9.3.6) 

 
Definition: Angular Velocity 
 

 The rate of change of angle with respect to time is called the angular 
velocity and is denoted by the Greek letter ! , 
 

 d
dt
!

" # . (9.3.7) 

 
The SI units of angular velocity are 1[rad s ]!" .  

 
Thus the magnitude of the velocity for circular motion is given by 
 
 v R != . (9.3.8) 
 
The direction of the velocity can be determined by considering that in Figure 9.3, with 
( ) ( )t t t R= ! + ! =r r! !  a constant, the two position vectors put tail-to-tail form two sides 
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of an isosceles triangle, and the third side, corresponding to !r! , must be perpendicular to 
the bisector of the triangle, regardless of the value of !" ;  thus, in the limit 0!" # , 
! "r r! ! , and so the direction of the velocity v!  at time t  is perpendicular to position 
vector ( )tr!  and tangent to the circular orbit in the ˆ+! -direction. 
 
There’s a rigorous way to show this mathematically:  Consider that since 2R = !r r! !  is a 
constant, 
 

 ( )2 2 0d dR
dt dt

= ! = ! =r r r v! ! ! ! , (9.3.9) 

 
and so !r v! !  (the trivial case =v 0

!!  will not concern us).  
 
The velocity vector is therefore 

 

 ˆ ˆ( ) ( ) ( )dt R t R t
dt
!

"= =v! ! ! . (9.3.10) 

 
Example 2: Relative Motion and Polar Coordinates 
 
By relative velocity we mean velocity with respect to a specified coordinate system. (The 
term velocity, alone, is understood to be relative to the observer’s coordinate system.) 
 

 
 

a. A point is observed to have velocity    
!v A  relative to coordinate system A . What is 

its velocity relative to coordinate system B , which is displaced from system  A  by 
distance  

!
R ? (  

!
R can change in time.) 

 
b. Particles  a  and  b  move in opposite directions around a circle with the magnitude 

of the  angular velocity! , as shown. At   t = 0  they are both at the point    
!r = l̂j , 

where  l  is the radius of the circle. Find the velocity of  a  relative to b . 
 
Solution: (a) The position vectors are related by 
 
    

!rB =
!rA !
!
R . (9.3.11) 
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Then velocities are related by the taking derivatives, (law of addition of velocities) 
 
    

!v B =
!v A !

!
V . (9.3.12) 

 
(b)  Let’s choose two reference frames; frame B is centered at particle b, and frame A is 
centered at the center of the circle in the figure below.  
 

 
 
Then the relative position vector between the origins of the two frames is given by 
 
     

!
R = l r̂ . (9.3.13) 

 
The position vector of particle a relative to frame A is given by 
 
     

!rA = l ˆ!r . (9.3.14) 
 
The position vector of particle b in frame B can be found by substituting Eqs. (9.3.14) 
and (9.3.13) into Eq. (9.3.11), 
 
     

!rB =
!rA !
!
R = l ˆ"r ! l r̂ . (9.3.15) 

 
We can decompose each of the unit vectors   ̂r  and   ̂ !r  with respect to the Cartesian unit 
vectors   ̂i  and   ĵ   (see figure) 
 
   r̂ = ! sin" î + cos" ĵ  (9.3.16) 
 
   ˆ!r = sin" î + cos" ĵ . (9.3.17) 
 
Then Eq. (9.3.15) giving the position vector of particle b in frame B becomes 
 
     

!rB = l ˆ!r " l r̂ = l (sin# î + cos# ĵ) " l (" sin# î + cos# ĵ) = 2l sin# î . (9.3.18) 
 
In order to find the velocity vector of particle a in frame B (i.e. with respect to particle b),  
differentiate Eq. (9.3.18) 
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!v B =

d
dt

(2l sin!) î = (2l cos!)
d!
dt

î = 2" l cos! î . (9.3.19) 

 
9.4 Circular Motion: Tangential and Radial Acceleration 
 
When the motion of an object is described in polar coordinates, the acceleration has two 
components, the tangential component, tana a!" , and the radial component, rad ra a! . We 
can write the acceleration vector as 
 
 ˆˆra a!= +a r!

! . (9.4.1) 
 
 We will begin by calculating the tangential component of the acceleration for 
circular motion. Suppose that the tangential velocity is changing in magnitude due to the 
presence of some tangential force. The tangential velocity is v R! "= , where !  is the 
angular velocity; if the angular velocity is changing, the velocity is also changing. 
 
 Since the radius is constant, the average tangential acceleration is just the rate of 
change of the magnitude of the velocity in a time interval t! , 
 

 ( )ave
va R
t t
!

!

"# #
= =
# #

. (9.4.2) 

 
 The instantaneous tangential acceleration involves the same limit argument that 
we have previously used. Let the time interval 0t! " . Then the tangential acceleration 
is the radius times the derivative of the angular velocity with respect to time, 
 

 
2

20 0
lim lim
t t

v d da R R R R
t t dt dt
!

!

" " !
#

$ % $ %

$ $
= = = = &

$ $
. (9.4.3) 

 
Definition: Angular Acceleration 
 

The angular acceleration is the rate of change of angular velocity with time (also 
the second derivative of angle with time) and is denoted by 
 

 
2

2

d d
dt dt
! "

# $ = . (9.4.4) 

 
The SI units of angular acceleration are 2[rad s ]!" . 

 
The tangential component of the acceleration is then 
 
 a R! "= . (9.4.5) 
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Period and Frequency for Uniform Circular Motion 
 
If the object is constrained to move in a circle and the total tangential force acting on the 
object is zero, total 0F! = . By Newton’s Second Law, the tangential acceleration is zero, 
 
 0a! = . (9.4.6) 
 
This means that the magnitude of the velocity (the speed) remains constant. This motion 
is known as uniform circular motion. 
 
Since the speed v  is constant, the amount of time that the object takes to complete one 
circular orbit of radius R  is also constant. This time interval, T , is called the period. In 
one period the object travels a distance s vT=  equal to the circumference, 2s R!= ; thus  
 
 2s R vT!= = . (9.4.7) 
 
The period T  is then given by 
 

 2 2 2 .R RT
v R
! ! !

" "
= = =  (9.4.8) 

 
The frequency f  is defined to be the reciprocal of the period, 
 

 1
2

f
T

!
"

= = . (9.4.9) 

 
The SI unit of frequency is the inverse second, which is defined as the hertz, 

1s [Hz]!" # $% & . 
 
Radial Acceleration for Uniform Circular Motion 
 
Of course, not all objects in circular orbits have constant speed.  A varying speed will 
result in a nonzero tangential acceleration ! , as described above.  A racial acceleration is 
present due to the change in direction of the velocity vector, and may be calculated by 
considering the radial component of the change in the velocity vector.  Considering only 
this change, we will assume constant speed, the case of uniform circular motion. 
 
An object traveling in a circular orbit with a constant speed is always accelerating 
towards the center. Any radial inward acceleration is called centripetal acceleration. The 
magnitude of the velocity is a constant, and the direction of the velocity is always tangent 
to the circle. However the direction of the velocity is constantly changing because the 
object is moving in a circle, as can be seen in Figure 9.4. Because the velocity changes 
direction, the object has a nonzero acceleration. 
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Figure 9.4 Direction of the velocity for circular motion. 
 
 The calculation of the magnitude and direction of the acceleration is very similar 
to the calculation for the magnitude and direction of the velocity for circular motion, but 
the change in velocity vector, !v! , is more complicated to visualize.  The change in 
velocity ( ) ( )t t t! = + ! "v v v! ! !  is depicted in Figure 9.5. 
  

 
Figure 9.5 Change in velocity vector. 

 
In Figure 9.5, the velocity vectors have been given a common point for the tails, so that 
the change in velocity, !v! , can be visualized. The length !v!  of the vertical vector can 

be calculated in exactly the same way as the displacement !r! .  
 
The magnitude of the change in velocity is 
  
 2 sin( / 2)v !" = "v! . (9.4.10) 
 
We can use the small angle approximation ( )sin / 2 / 2! !" # "  to approximate the 
magnitude of the change of velocity, 
 
 v !" # "v! . (9.4.11) 
 
The magnitude of the radial acceleration is given by 
 

 
0 0 0

lim lim lim .r t t t

v da v v v
t t t dt

! ! !
"

# $ # $ # $

# # #
= = = = =

# # #

v!
 (9.4.12) 
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 The centripetal acceleration can be expressed in several equivalent forms since 
both the magnitude of the velocity and the angular velocity are related by v R != . Thus 
we have several alternative forms for the magnitude of the centripetal acceleration. The 
first is that in Equation (9.4.12).  The second is in terms of the radius and the angular 
velocity, 
 
 2

ra R!= . (9.4.13) 
 
The third form expresses the magnitude of the centripetal acceleration in terms of the 
speed and radius, 
 

 
2

.r
va
R

=  (9.4.14) 

 
 Recall that the magnitude of the angular velocity is related to the frequency by 

2 f! "= , so we have a fourth alternate expression for the magnitude of the centripetal 
acceleration in terms of the radius and frequency, 
 
 2 24ra R f!= . (9.4.15) 
 
A fifth form commonly encountered uses the fact that the frequency and period are 
related by ( )1/ / 2f T ! "= = . Thus we have the fourth expression for the centripetal 
acceleration in terms of radius and period, 
 

 
2

2

4
r

Ra
T
!

= . (9.4.16) 

 
Other forms, such as 2 24 /R f T!  or 2 R f! " , while valid, are uncommon. 
 
 Often we decide which expression to use based on information that describes the 
orbit. A convenient measure might be the orbit’s radius. We may also independently 
know the period, or the frequency, or the angular velocity, or the speed. If we know one, 
we can calculate the other three but it is important to understand the meaning of each 
quantity.  
 
The direction of the acceleration is determined by the same method as the direction of the 
velocity;  in the limit 0!" # , ! "v v! ! , and so the direction of the velocity a!  at time t  is 
perpendicular to position vector ( )tv!  and directed inward, in the ˆ!r -direction. 
 
So for an object that is undergoing circular motion the acceleration vector has radial and 
tangential components given by  
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!a(t) = !R d"
dt

#

$%
&

'(

2

r̂(t) + R d 2"

dt2 "̂(t) = !R) 2!r(t) + R* "̂(t) . (9.4.17) 

 
where   ! " d# / dt  is the angular velocity and   ! " d# / dt = d 2$ / dt2  is the angular 
acceleration. Keep in mind that as the object moves in a circular, the unit vectors    ̂r(t)  
and   !̂(t)  change direction and hence are not constant in time.  
 
When the motion is uniform circular motion then    d! / dt = 0 . Therefore the acceleration 
has only a radial component and the direction is towards the center of the circular orbit  
 

 
    
!a(t) = ar r̂(t) = !R" 2 r̂(t) = ! v2

R
r̂(t) . (9.4.18) 

 
For an algebraic way of deriving the above results, see Appendix A. 
 
9.5 Summary: Circular Motion Kinematics 
 
For an object undergoing circular motion the position vector is given by Eq. (9.3.1) 
 
     

!r(t) = Rr̂ . (9.5.1) 
 
The arc length for circular motion of radius R  is 
 
 s R!= . (9.5.2) 
 
The rate of change of arc length with respect to time is the tangential speed v , 
 

 ds dv R R
dt dt

!
"= = = , (9.5.3) 

 
where !  is the angular velocity. The velocity vector is given by Eq. (9.3.10) 
 

 ˆ ˆ( ) ( ) ( )dt R t R t
dt
!

"= =v! ! ! . (9.5.4) 

 
The rate of change of the magnitude of the tangential velocity with respect to time is the 
tangential acceleration 
 

 
2

2

dv da R R
dt dt
!

!

!
"= = = . (9.5.5) 

 
where !  is the angular acceleration. 
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The rate of change of the direction of the tangential velocity with respect to time is the 
centripetal acceleration; this vector is directed towards the center and has magnitude 
 

 
2

2.r
va v R
R

! != = =  (9.5.6) 

 
The acceleration vector is given by Eq. (9.4.17) 
 

 
    

!a(t) = !R d"
dt

#

$%
&

'(

2

r̂(t) + R d 2"

dt2 "̂(t) = !R) 2!r(t) + R d)
dt

"̂(t) . (9.5.7) 

 
For uniform circular motion, the acceleration vector is given by Eq. (9.4.18) 
 
     

!a(t) = !R" 2!r(t) . (9.5.8) 
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