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Module 15: Simple Harmonic Motion 
 
15.1 Introduction: Periodic Motion  
 
There are two basic ways to measure time: by duration or periodic motion. Early clocks 
measured duration by calibrating the burning of incense or wax, or the flow of water or 
sand from a container. Our calendar consists of years determined by the motion of the 
sun; months determined by the motion of the moon; days by the rotation of the earth; 
hours by the motion of cyclic motion of gear trains; and seconds by the oscillations of 
springs or pendulums. In modern times a second is defined by a specific number of 
vibrations of radiation, corresponding to the transition between the two hyperfine levels 
of the ground state of the cesium 133 atom (see Section 1.3).  
 

Sundials calibrate the motion of the sun through the sky including seasonal 
corrections. A clock escapement is a device that can transform continuous movement into 
discrete movements of a gear train. The early escapements used oscillatory motion to stop 
and start the turning of a weight-driven rotating drum. Soon, complicated escapements 
were regulated by pendulums, the theory of which was first developed by the physicist 
Christian Huygens in the mid 17th century. The accuracy of clocks was increased and the 
size reduced by the discovery of the oscillatory properties of springs by Robert Hooke.  
By the middle of the 18th century, the technology of timekeeping advanced to the point 
that William Harrison developed timekeeping devices that were accurate to one second in 
a century.  

 
One of the most important examples of periodic motion is Simple Harmonic 

Motion, in which some physical quantity varies sinusoidally.  Suppose a function of time 
has the form of sine wave function, 
 
   y(t) = Asin(2! t / T ) = Asin(2! f t)  (15.1.1) 
 
where 0A >  is the amplitude  (maximum value). The function ( )y t varies between A  
and A! , since a sine function varies between 1+  and 1! . A graph of ( )y t  vs. time is 
shown in Figure 15.1 (with   A = 3 and  T = ! ).  
 

 
 

Figure 15.1 Sinusoidal function of time 
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The sine function is periodic in time.  This means that the value of the function at 

time t  will be exactly the same at a later time t t T! = + , where T  is the period.   
 
That the sine function satisfies the periodic condition can be seen from 
 

 2 2 2( ) sin ( ) sin 2 sin ( )y t T A t T A t A t y t
T T T
! ! !

!" # " # " #+ = + = + = =$ % $ % $ %& ' & ' & '
. (15.1.2) 

 
The frequency, f , is defined to be 
 
 1/f T! . (15.1.3) 
 
The SI unit of frequency is inverse seconds, 1s!" #$ % , or hertz [Hz] . The angular frequency 
of oscillation is defined to be  
 
 2 / 2T f! " "# =  (15.1.4) 
 
and is measured in radians per second. One oscillation per second, 1Hz , corresponds to 
an angular frequency of 12 rad s! "# . (Unfortunately, the same symbol !  is used for 
angular velocity in circular motion. For uniform circular motion the angular velocity is 
equal to the angular frequency but for non-uniform motion the angular velocity will not 
be constant but the angular frequency for simple harmonic motion is a constant by 
definition.)   
 
15.2 Simple Harmonic Motion: Object-Spring System 
 
Our first example of a system that demonstrates simple harmonic motion is an object-
spring system on a frictionless surface, shown in Figure 15.2 
 

 
 

Figure 15.2 Object-Spring system 
 
The object is attached to one end of a spring. The other end of the spring is attached to a 
wall at the right in the figure. Assume that the object undergoes one-dimensional motion. 
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The spring has a spring constant k . The spring is initially stretched a distance 0 0x >  
from the equilibrium position and is given an initial speed 0v  in the positive x -direction.  
  
Choose the origin at the equilibrium position and choose the positive x-direction to the 
left in the figure.  In the figure, 0x >  corresponds to an extended spring, 0x <  to a 
compressed spring. Define ( )x t  to be the position of the object with respect to the 
equilibrium position. The force acting on the spring is a linear restoring force, xF k x= !  
(Figure 15.3). 
 

 
 

Figure 15.3: Force law for object-spring system 
 
Newton’s Second law in the x-direction becomes 
 

 
2

2

d x
k x m

dt
! = . (15.2.1) 

 
This equation of motion, Equation (15.2.1), is called the simple harmonic oscillator 
(SHO) equation. Since the spring force depends on the distance x , the acceleration is not 
constant. Equation (15.2.1) is a second order linear differential equation, in which the 
second derivative of the dependent variable is proportional to the dependent variable, 
 

 
2

2

d x
x

dt
! " . (15.2.2) 

 
In this case, the constant of proportionality is /k m ,  
 

 
2

2

d x k
x

dt m
= ! . (15.2.3) 

 
Equation (15.2.3) can be solved from energy considerations  or other advanced 
techniques but instead we shall first guess the solution and then verify that the guess 
satisfies the SHO differential equation. 
We are looking for a position function such that the second time derivative of the position 
(acceleration) of the object is proportional to the negative of the position of the object. 



5-4 12/28/2010  

Since the sine and cosine functions both satisfy this property, we make a preliminary 
guess that our position function is given by  
 
 ( ) cos((2 / ) ) cos( )x t A T t A t! "= = , (15.2.4) 
 
where as in Equation (15.1.4) 2 /T! "# is the angular frequency (as of yet, 
undetermined).  In Equation (15.2.4), the constant A  is not necessarily the amplitude of 
the motion; A  is the amplitude for the case 0 0x > , 0 0v = . 
 
We shall now find the condition the angular frequency !  must satisfy in order to insure 
that the function in (15.2.4) solves the simple harmonic oscillator equation (15.2.1). The 
first and second derivatives of the position function are given by 
 

 
2

2 2
2

sin( )

cos( ) .

dx
A t

dt
d x

A t x
dt

! !

! ! !

= "

= " = "

 (15.2.5) 

 
Substitute the second derivative, the second expression in (15.2.5), and the position 
function, Equation (15.2.4), into the SHO Equation (15.2.1), giving 
 

 2 cos( ) cos( )
kA t A t
m

! ! !" = " . (15.2.6) 

 
Equation (15.2.6) is valid for all times provided that   
 

 k
m

! = . (15.2.7) 

 
The period of oscillation is then  
 

 2 2 mT
k

!
!

"
= = . (15.2.8) 

 
One possible solution is then  
 

 

  

x(t) = Acos
k
m

t
!

"
#

$

%
&

vx (t) = '
k
m

Asin
k
m

t
!

"
#

$

%
& .

 (15.2.9) 
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Note that at 0t = , the position of the object is 0 ( 0)x x t A! = =  since cos(0) 1=  and the 
velocity is   v0 ! vx (t = 0) = 0  since sin(0) 0= . The solution in (15.2.9) describes an object 
that is released from rest at an initial position 0A x=  but does not satisfy the initial 
velocity condition,   vx (t = 0) = v0 ! 0 .  
 
We can try a sine function as another possible solution,  
 

 ( ) sin k
x t B t

m
! "

= # $# $
% &

. (15.2.10) 

 
This function also satisfies the simple harmonic oscillator equation because 
 
  

 
2

2
2 sind k k
x B t x

dt m m
!

" #
= $ = $% &% &

' (
 (15.2.11) 

 
with /k m! = . 
 
The velocity associated with Equation (15.2.10) is  
 

 
  
vx (t) =

dx
dt

=
k
m

Bcos
k
m

t
!

"
#

$

%
& . (15.2.12) 

 
The proposed solution in (15.2.10) has initial conditions 0 ( 0) 0x x t! = =  and 

  v0 ! vx (t = 0) = ( k / m)B , thus 0 / /B v k m= . This solution describes an object that is 
initially at the equilibrium position but has an initial non-zero velocity component, 
0 0v ! . 

 
General Solution of Simple Harmonic Oscillator Equation 
 
Suppose 1( )x t  and 2 ( )x t  are both solutions of the simple harmonic oscillator equation, 
 

 

2

1 12

2

2 22

( ) ( )

( ) ( )

d k
x t x t

dt m
d k
x t x t

dt m

= !

= !

 (15.2.13) 
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Then the sum 1 2( ) ( ) ( )x t x t x t= +  of the two solutions is also a solution. To see this, 
consider  
 

 
2 2 2 2

1 2 1 22 2 2 2( ) ( ( ) ( )) ( ) ( )d d d d
x t x t x t x t x t

dt dt dt dt
= + = + . (15.2.14) 

 
Using the fact that 1( )x t  and 2 ( )x t  both solve the simple harmonic oscillator equation 
(15.2.13), we see that  
  

  

 
( )

2

1 2 1 22 ( ) ( ) ( ) ( ) ( )

( ).

d k k k
x t x t x t x t x t

dt m m m
k
x t

m

= ! + ! = ! +

= !

 (15.2.15) 

 
Thus the linear combination 1 2( ) ( ) ( )x t x t x t= +  is also a solution of the SHO equation, 
Equation (15.2.1). 
 
Therefore the sum of the sine and cosine solutions is our general solution, 
 
   x(t) = C cos(! t) + Dsin(! t) , (15.2.16) 
 
where the constant coefficients  C  and  D  depend on a given set of initial conditions 
0 ( 0)x x t! =  and   v0 ! vx (t = 0)  where 0x  and 0v  are constants.  

 
For this general solution, the x-component of the velocity of the object at time t  is then 
obtained by differentiating the position function,  
 

 
  
vx (t) =

dx
dt

= !"C sin(" t) +"Dcos(" t) . (15.2.17) 

 
To find the constants  C  and  D , substitute 0t =  into the Equations (15.2.16) and 
(15.2.17). Since cos(0) 1=  and sin(0) 0= , the initial position at time 0t =  is  
  
   x0 ! x(t = 0) = C . (15.2.18) 
 
The x-component of the velocity at time 0t =  is  
 
   v0 = vx (t = 0) = !"C sin(0) +"Dcos(0) ="D . (15.2.19) 
 
Thus  
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C = x0 and D =

v0

!
. (15.2.20) 

 
The position of the object-spring system is then given by  
 

 0
0( ) cos sin

/
k v k

x t x t t
m mk m

! " ! "
= +# $ # $# $ # $

% & % &
 (15.2.21) 

 
and the x-component of the velocity of the object-spring system is  
 

 
  
vx (t) = !

k
m

x0 sin
k
m

t
"

#
$

%

&
' + v0 cos

k
m

t
"

#
$

%

&
' . (15.2.22) 

 
Although we had previously specified 0 0x >  and 0 0v > , Equation (15.2.21) is a valid 
solution of the SHO equation (15.2.1) for any signs of 0x  and 0v . 
 
Example 15.2.1: Show that  
 

  x(t) = C cos!t + C sin!t = Acos(!t + ") , 
where   

  A = (C 2 + D2 )1 2 > 0 , and   ! = tan"1("D / C) . 
 
Solution: Use the identity 
 

  Acos(!t + ") = Acos(!t)cos(") # Asin(!t)sin(") . 
 
Thus  

  C cos(!t) + Dsin(!t) = Acos(!t)cos(") # Asin(!t)sin(") . 
 
Comparing coefficients we see that  
 

  C = Acos! . 
 

  D = !Asin" . 
Therefore  
 

  (C
2 + D2 )1 2 = A2 (cos2! + sin2!) = A2 . 

 
We choose the positive square root to insure that   A > 0  
 
   A = (C 2 + D2 )1 2 . (15.2.23) 
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Also  
 

  
tan! =

sin!
cos!

=
"D / A
C / A

= "
D
C

. 

 
Hence 
   ! = tan"1("D / C) . (15.2.24) 
 
Thus the position as a function of time can be written as 
 
   x(t) = Acos(!t + ") . (15.2.25) 
 
In Eq. (15.2.25) the quantity !  is called the phase shift. Because   cos(!t + ")  varies 
between  +1 and  !1, and   A > 0 ,  A  is the amplitude defined earlier. 
 
We now substitute Eq. (15.2.20) into Eq. (15.2.23) and find that the amplitude of the 
motion described in Equation (15.2.21), that is, the maximum maxx value of ( )x t , is 
 
   A = x0

2 + (v0 /! )2 . (15.2.26) 
and the phase is given by 
 
   ! = tan"1("v0 /#x0 ) . (15.2.27) 
 
A plot of ( )x t  vs.  t  is shown in Figure 15.3a with the values   A = 3,  T = ! , and 

 ! = " / 4 . 
 

 
 

Figure 15.3a Plot of   Acos(!t + ")  vs.  t  
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Note that   x(t) = Acos(!t + ")  takes on its maximum value when   cos(!t + ") = 1. This 
occurs when   !t + " = 2#n  where   n = 0, ±1, ± 2,! ! ! . The maximum value associated with 
  n = 0  occurs when   !t + " = 0  or   t = !" /# . For the case shown in Figure 15.3a when 

 ! = " / 4 , this occurs at the instant   t = !T / 8 .  
 
 

 
Figure 15.4(i) 

 

 
Figure 15.4(ii) 

 

 
Figure 15.4(iii) 

 
Let’s plot   x(t) = Acos(!t + ")  vs.  t  for  ! = 0  (Figure 15.4(ii)).  For  ! > 0 ,  Figure 
15.4(i) shows the plot   x(t) = Acos(!t + ")  vs.  t  . Notice that   x(t)  is shifted to the left 
compared with the case  ! = 0  (compare Figures 5.4(i) with 5.4(ii)). The function 

  x(t) = Acos(!t + ")  with  ! > 0  reaches it’s a maximum value at an earlier time than the 
function   x(t) = Acos(!t) . Hence the origin of the term phase shift. When  ! < 0 , the 
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function   x(t) = Acos(!t + ")  reaches it’s a maximum value at a later time   t = T / 8  than 
the function   x(t) = Acos(!t)  as shown in Figure 15.4iii.  
 
15.2.2 Example: Block-Spring System 
 
A block of mass m  is attached to a spring and is free to slide along a horizontal 
frictionless surface. At  0t = , the block-spring system is stretched an amount 0 0x >  
from the equilibrium position and is released from rest, 0 0v = . What is the period of 
oscillation of the block? What is the velocity of the block when it first comes back to the 
equilibrium position?  
 
Solution:  
 
The position of the block is, from Equation (15.2.21),   
 

 0( ) cos
k

x t x t
m

! "
= # $# $

% &
 (15.2.28) 

 
and its x-component of its velocity is given by Equation (15.2.22), 
 

 
  
vx (t) = !

k
m

x0 sin
k
m

t
"

#
$

%

&
' . (15.2.29) 

 
The angular frequency of oscillation is /k m! =  and the period is given by 
Equation (15.2.8), 
 

 2 2 mT
k

!
!

"
= = . (15.2.30) 

 
The block first reaches equilibrium when the position function first reaches zero. This 
occurs at time 1t  satisfying  
 

 1 1,
2 2 4

k m Tt t
m k

! !
= = = . (15.2.31) 

 
The x-component of the velocity at time 1t  is then 
 

 
  
vx (t1) = !

k
m

x0 sin
k
m

t1
"

#
$

%

&
' = !

k
m

x0 sin(( / 2) = !
k
m

x0 = !) x0  (15.2.32) 
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Note that the block is moving in the negative x -direction at time 1t ; the block has moved 
from a positive initial position to the equilibrium position. 
 
15.3 Energy and the Simple Harmonic Oscillator 
 
Let’s consider the block-spring system of Example 5.2.1 in which the block is initially 
stretched an amount 0 0x >  from the equilibrium position and is released from rest, 

0 0v = . We shall consider three states: State 1, the initial state; State 2, the state at an 
arbitrary time in which the position and velocity are non-zero; and State 3, the state when 
the object first comes back to the equilibrium position. We shall show that the position 
and velocity functions for the object-spring give a constant mechanical energy. Choose 
the equilibrium position for the zero point of the potential energy. 
 
State 1: All the energy is stored in the object-spring potential energy: 2

1 0(1/ 2)U k x= . The 
object is released from rest so the kinetic energy is zero, 1 0K = . The total mechanical 
energy is then 
 

 2
1 1 0

1
2

E U k x= = . (15.3.1) 

 
State 2: At some time t , the position and x-component of the velocity of the object are 
given by 
 

 

  

x(t) = x0 cos
k
m

t
!

"
#

$

%
&

vx (t) = '
k
m

x0 sin
k
m

t
!

"
#

$

%
& .

 (15.3.2) 

 
The kinetic energy is 
 

 2 2 2
2 0
1 1 sin
2 2

k
K mv k x t

m
! "

= = # $# $
% &

. (15.3.3) 

 
and the potential energy is  
 

 2 2 2
2 0
1 1

cos
2 2

k
U k x k x t

m
! "

= = # $# $
% &

. (15.3.4) 

 
The total mechanical energy is the sum of the kinetic and potential energies  
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2 2
2 2 2

2 2 2
0

2
0

1 1
2 2

1
cos sin

2

1
.

2

E K U mv k x

k k
k x t t

m m

k x

= + = +

! "! " ! "
= +# $# $ # $# $ # $# $% & % &% &

=

 (15.3.5) 

 
The total mechanical energy is equal to the initial potential energy in State 1, so the total 
mechanical energy is constant. This should come as no surprise; we isolated the object-
spring system so that there is no external work performed on the system.  
 
State 3: Now the object is at the equilibrium position so the potential energy is zero, 
3 0U = , and all the mechanical energy is in the form of kinetic energy (Figure 15.5).  

 

 2
3 3 eq

1
2

E K mv= = . (15.3.6) 

 

 
 

Figure 15.5 State 3: at equilibrium and in motion 
 
Since the system is isolated, mechanical energy is constant, 
 
 1 2 3E E E= = . (15.3.7) 
 
Therefore the initial stored potential energy is released as kinetic energy, 
 

 2 2
0 eq

1 1
2 2
k x mv= , (15.3.8) 

 
and the x -component of velocity at the equilibrium position is given by 
 

 
  
vx,eq = ±

k
m

x0 . (15.3.9) 
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Note that the plus-minus sign indicates that when the block is at equilibrium, there are 
two possible motions: in the positive x -direction or the negative x -direction.  If we take 
0 0x > , then the block starts moving towards the origin, and 

  
vx,eq  will be negative the first 

time the block moves through the equilibrium position.  
 
In hindsight, we could have used the result of the analysis of Stage 2, Equation (15.3.2), 
with Stages 1 and 3 as special cases, 0t =  for Stage 1 and / 4 / / 2t T m k!= =  from 
Equation (15.2.31) for Stage 3. 
 
 
Example 15.3.1: A simple pendulum consists of a massless string of length l  and a 
point-like object of mass m  attached to one end. Suppose the string is fixed at the other 
end and is initially pulled out at a small angle !0  from the vertical and released from rest.  
 

a) Using the small angle approximation sin!0 " !0  and either energy    techniques or 
Newton’s Second Law, show that the angle the object makes with the vertical 
satisfies a simple harmonic oscillator differential equation.  

 
b) How long (period) will the pendulum take to return to its initial position? 

 
c) What is the frequency and angular frequency of oscillation? 

 
d) What is the speed of the object at the bottom of its swing? 

 
e) What is the angular velocity of the object at the bottom of its swing? 

 
f) Is the angular velocity the same as the angular frequency for the pendulum? Why 

or why not? 
 

g) Why or why not does the period depend on the mass of the object? 
 
Solution:  A pendulum consists of an object hanging from the end of a string or rigid rod 
pivoted about the pointS . The object is pulled to one side and allowed to oscillate. If the 
object has negligible size and the string or rod is massless, then the pendulum is called a 
simple pendulum. Let’s choose polar coordinates for the pendulum as shown in the figure 
below (left) along with the free body force diagram for the suspended object (right).  
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The object will move in a circular arc centered at the pivot point.  The forces on the 
object are the tension in the string and gravity.   The gravitation force on the object has 
radial r̂ - and !̂ - components given by 
 
     m

!g = mg(cos! r̂ " sin! !̂)  (15.3.10) 
 
Our concern is with the tangential component of the gravitational force, 
 
 F! = "mgsin! . (15.3.11) 
 
The sign in Equation (15.3.11) is crucial; the tangential force tends to restore the 
pendulum to the equilibrium value ! = 0 .  If ! > 0 , F! < 0  and if ! < 0 , F! > 0 , where 
we are assuming that the angle !  is restricted to the range !" < # < " , implied by the 
small-angle approximation sin!0 " !0 . The tangential component of acceleration is 
 

 a! = l" = l d
2!
dt 2

. (15.3.12) 

 
So Newton’s Second Law, F! = ma!  yields 
 

 
!mgl sin" = ml2 d

2"
dt 2

d 2"
dt 2

+
g
l
sin" = 0

. (15.3.13) 

 
In the limit of small oscillations, sin!0 " !0 , this expression becomes 
 

 
d 2!
dt 2

" #
g
l
!.  (15.3.14) 

 
This equation is similar to the object-spring simple harmonic oscillator 
differential equation  
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d 2x
dt 2

= !
k
m
x , (15.3.15) 

 
which describes the oscillation of a mass about the equilibrium point of a spring. The 
angular frequency of oscillation (denoted !0  to distinguish from the angular velocity 
! = d" / dt ) is given by 
 

 !0 =
k
m

. (15.3.16) 

 
By comparison, the frequency of oscillation for the pendulum is approximately  
 

 !0 "
g
l

, (15.3.17) 

 
with period 
 

 T =
2!
"0

# 2! l
g

. (15.3.18) 

 
The solutions to (15.3.14) are well-known.  With the initial condition that the pendulum 
is released from rest at a small angle !0 , the angle the string makes with the vertical is 
given 
 

 !(t) = !0 cos "0 t( ) = !0 cos
2#
T
t$

%&
'
()
= !0 cos

g
l
t

$

%&
'

()
. (15.3.19) 

 
The component of the angular velocity of the bob is  
 

 
d!
dt
(t) = " g

l
!0 sin

g
l
t

#

$%
&

'(
. (15.3.20)  

 
Keep in mind that the component of the angular velocity ! = d" / dt  is a kinematic 
variable that changes with time in an oscillatory manner (sinusoidally in the limit of small 
oscillations).  The angular frequency !0  is a parameter that describes the system.  The 
component of the angular velocity ! , besides being time-dependent, depends on the 
amplitude of oscillation !0 .  In the limit of small oscillations, !0  does not depend on the 
amplitude of oscillation. 
 
The fact that the period is independent of the mass of the object follows algebraically 
from the fact that the mass appears on both sides of Newton’s Second Law and hence 
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cancels. Consider also the argument that is attributed to Galileo:  If a pendulum 
consisting of two identical masses joined together were set to oscillate, the two halve 
would not exert forces on each other.  So, if the pendulum were split into two pieces, the 
pieces would oscillate the same as if they were one piece.  This argument can be 
extended to simple pendula of arbitrary masses. 
 
Energy Approach: We can use energy methods to find the differential equation describing 
the time evolution of the angle ! . When the string is at an angle !  with respect to the 
vertical, the gravitational potential energy (relative to a choice of zero potential energy at 
the bottom of the swing where ! = 0 ) is given by 
 
 U = mgl 1! cos"( )  (15.3.21) 
 

 
 
The component of the velocity of the object is given by v! = l(d! / dt)  so the kinetic 
energy is  
 

 K =
1
2
mv!

2 =
1
2
m l d!

dt
"
#$

%
&'

2

. (15.3.22) 

 
The energy of the system is then 
 

 E = K +U =
1
2
m l d!

dt
"
#$

%
&'

2

+ mgl 1( cos!( )  (15.3.23) 

 
Since there is no non-conservative work, the energy is constant hence 
 

 
0 = dE

dt
=
1
2
m2l2 d!

dt
d 2!
dt 2

+ mgl sin! d!
dt

= ml2 d!
dt

d 2!
dt 2

+
g
l
sin!

"

#$
%

&'

. (15.3.24) 

 
There are two solutions to this equation, the first one d! / dt = 0  is the equilibrium 
solution, the angular speed is zero means the suspended object is not moving. The second 
solution is the one we are interested in 
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d 2!
dt 2

+
g
l
sin! = 0  (15.3.25) 

 
which is the same differential equation we found using the force method. 
 
We can find the time t1  that the object first reaches the bottom of the circular arc by 
setting !( t1) = 0  in Eq. (15.3.19)  
 

 0 = !0 cos
g
l
t1

"

#$
%

&'
. (15.3.26) 

 
This zero occurs when the argument of the cosine satisfies 
 

 
g
l
t1 =

!
2

. (15.3.27) 

 
The component of the angular velocity at time t1  is therefore 
 

 
d!
dt
(t1) = "

g
l
!0 sin

g
l
t1

#

$%
&

'(
= "

g
l
!0 sin

)
2

#
$%

&
'(
= "

g
l
!0 . (15.3.28) 

 
Note that the negative sign means that the bob is moving in the negative !̂  direction 
when it first reaches the bottom of the arc. 
 
The component of the velocity at time t1  is therefore 
 

 v! (t1) " v1 = l
d!
dt
(t1) = #l

g
l
!0 sin

g
l
t1

$

%&
'

()
= # lg!0 sin

*
2

$
%&

'
()
= # lg!0 . (15.3.29) 

 
We can also find the component of both the velocity and angular velocity using energy 
methods. When we release the bob from rest, the energy is only potential energy 
 

 E =U0 = mgl 1! cos"0( ) # mgl"0
2

2
 (15.3.30) 

 

where we used the approximation that 
2
0

0cos 1
2
!

! " # . When the bob is at the bottom of 

the arc, the only contribution to the energy is the kinetic energy given by 
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 K1 =
1
2
mv1

2 . (15.3.31) 

  
Since the energy is constant, we have that U0 = K1  or 
 

 mgl!0
2

2
=
1
2
mv1

2 . (15.3.32) 

 
We can solve for the component of the velocity at the bottom of the arc  
 
 v1 = ± gl !0  (15.3.33) 
 
noting that the two possible solutions correspond to the different directions that the bob 
can have when at the bottom. The component of the angular velocity is then 
 

 
d!
dt
(t1) =

v1
l
= ±

g
l
!0  (15.3.34) 

 
in agreement with our previous calculation. 
 
If we do not make the small angle approximation, we can still use energy techniques to 
find the component of the velocity at the bottom of the arc by equating the energies at the 
two positions 
 

 mgl 1! cos"0( ) = 1
2
mv1

2  (15.3.35) 

 
Hence 
 
 v1 = ± 2gl 1! cos"0( ) . (15.3.36) 
 
 
 
Chapter 15 Appendix: Solution to Simple Harmonic Oscillator 
Equation 
 
In our analysis of the solution of the simple harmonic oscillator equation of motion, 
Equation (15.2.1), 
 

 
2

2

d x
k x m

dt
! = , (15.A.1) 

 
we assumed that the solution was a linear combination of sinusoidal functions, 
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 ( ) cos( ) sin( )x t A t B t! != + , (15.A.2) 
 
where /k m! = . 
 
We shall now begin with the condition that the mechanical energy of a closed system is 
constant (see Section 15.3) and, after integration, determine the position of the oscillating 
body as a function of time. 
 
 Assume that the mechanical energy of the block-spring system is given by the 
constant E . Choose the reference point for potential energy to be the unstretched position 
of the spring. Let x  denote the amount the spring has been compressed ( 0x < ) or 
stretched ( 0x > ) from equilibrium at time t  and denote the amount the spring has been 
compressed or stretched from equilibrium at time 0t =  by 0( 0)x t x= ! .  Let /v dx dt=  
denote the x -component of the velocity at time t  and denote the x -component of the 
velocity at time 0t =  by 0( 0)v t v= ! .  The constancy of the mechanical energy is then 
expressed as  
 

 2 21 1
2 2

E K U k x mv= + = + . (15.A.3) 

 
We can solve Equation (15.A.3) for square of the x -component of the velocity, 
 

 2 2 22 2 1
2

E k E k
v x x

m m m E
! "= # = #$ %
& '

. (15.A.4) 

 
Taking square roots, we have 
  

 22 1
2

dx E k
x

dt m E
= !  (15.A.5) 

 
(why we take the positive square root will be explained below). 
 
Let 2 /a E m!  and / 2b k E! .   It’s worth noting that a  has dimensions of velocity and 
b  has dimensions of  [length]!2 .  Equation (15.A.5) is separable; 
 

 

2

2

1

.
1

dx
a b x

dt
dx

adt
b x

= !

=
!

 (15.A.6) 
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The integral on the left in the last expression in Equation (15.A.6) is well known, and the 
standard derivation is presented here. 
 
We make a change of variables   cos! = b x   with the differentials d!  and dx  related 

by   ! sin" d" = b dx . The integration variable is 
 

   ! = cos"1( b x) . (15.A.7) 
  
Equation (15.A.6) then becomes  
 

 
  

! sin" d"

1!cos2"
= ba dt . (15.A.8) 

 
This is a good point at which to check the dimensions.  The term on the left in Equation 
(15.A.8) is dimensionless, and the product ba  on the right has dimensions of inverse 
time,  [length]!1[length " time!1] = [time!1] , so ba dt  is dimensionless. 
 
Using the trigonometric identity 21 sin cos! !" = , Equation  (15.A.8) reduces to 
 
  d! = " ba dt . (15.A.9) 
 
Although at this point in this derivation we don’t know that ba , which has dimensions 
of frequency, is the angular frequency of oscillation, we’ll use some foresight and make 
the identification; 
 

 2
2
k E kba
E m m

! " = = , (15.A.10) 

 
and Equation (15.A.9) becomes 
 
  d! = "# dt . (15.A.11) 
 
 
After integration we have 
 
   ! "!0 = "# t , (15.A.12) 
 
where  !0 " #$  is the constant of integration. Since   ! = cos"1( b x(t)) , Equation 
(15.A.12) becomes 
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   cos!1( b x(t)) = !(" t + #) . (15.A.13) 
 
 
Take the cosine of each side of Equation (15.A.13), yielding 
 

 
  
x(t) =

1

b
cos(!(" t + #)) =

2E
k

cos(" t + #) . (15.A.14) 

 
At 0t = , 
 

 
  
x0 ! x(t = 0) =

2E
k

cos" . (15.A.15) 

 
The x-component of the velocity as a function of time is then 
 

 
  
vx (t) =

dx(t)
dt

= !"
2E
k

sin(" t + #) . (15.A.16) 

 
At 0t = , 
 

 
  
v0 ! vx (t = 0) = "#

2E
k

sin$ . (15.A.17) 

 
We can determine the constant !  by dividing the expressions in Equations (15.A.17) and 
(15.A.15), 
 

 
  
!

v0

"x0

= tan#  (15.A.18) 

 
 
Thus the constant !  can be determined by the initial conditions and the angular 
frequency of oscillation, 
 

 
  
! = tan"1 "

v0

#x0

$

%
&

'

(
) . (15.A.19) 

 
Using the identity 
 
   cos(!t + ") = cos!t cos" # sin!t sin"  (15.A.20) 
 
to expand Equation (15.A.14) yields 
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x(t) =

2E
k

cos!t cos" =
2E
k

sin!t sin" , (15.A.21) 

 
and substituting Equations (15.A.15) and (15.A.17) 
 

 0
0( ) cos sin

v
x t x t t! !

!
= + , (15.A.22) 

 
agreeing with the solution found in Section 15.2  
 
Note that the energy at time t  is given by 
 

 2 21 1( )
2 2

E t mv k x= + . (15.A.23) 

 
Substitution of Equations (15.A.16) and (15.A.14) into Equation (15.A.23) yields 
 

 2 2 21 2 1 2
( ) cos ( ) sin ( )

2 2
E EE t m t k t
k k

! ! " ! "= + + + . (15.A.24) 

 
Since 2 /k m! = , Equation (15.A.24) simplifies to 
 
 2 2( ) (cos ( ) sin ( ))E t E t t E! " ! "= + + + = , (15.A.25) 
 
illustrating that the mechanical energy is constant in time. 
 
So, what about the missing ±  that should have been in Equation (15.A.5)?  Strictly 
speaking, we would need to redo the derivation for the block moving in different 
directions.  Mathematically, this would mean replacing !  by ! "#  (or ! "# ) when the 
block’s velocity changes direction.  Changing from the positive square root to the 
negative and changing !  to ! "#  has the collective action of reproducing 
Equation (15.A.22). 
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