
   
  

 
 

     
 

            
               

        
           

             
 

 
 

   
 

             

   

 
             

              
             

          
              

             
          

            
             

         
              

           

Simple Harmonic Oscillator
 
Challenge Problems
 

Problem 1: Dimensional Analysis, Estimation and Concepts 

Imagine that one drilled a hole with smooth sides straight through the center of the earth, 
of radius Re = 6.4 !10 6 m . If the air is removed from this tube (and the tube doesn’t fill 
up with water, liquid rock or iron from the core), an object dropped into one end will 
have enough energy to just exit the other end after an interval of time. Use dimensional 
analysis to estimate that interval of time. Let g " != 9.8 m s 2 be the gravitational 
constant. 

Problem 1 Solutions: 

The only combination of the given parameters that has dimensions of time is 
Re = 810s = 13.5min . (1.1)
g 

If such a hole could be made, and the density of the earth were constant, the motion 
would be simple harmonic. The force on an object would be its greatest at the surface of 
the earth, decrease to zero as the object approached the center of the earth, and reverse 
direction (that is, remain directed towards the center of the earth) after passing through 
the center. For uniform density, the force would be proportional to the distance from the 
center. If we model this motion as the object being subject to a restoring force with 
“effective spring constant” k , we have k R = mg , and the period of this motion eff eff e 

would be T = 2! Re / g = 87min . It’s not hard to show (but not part of this problems) 
that this is the period of a satellite in low orbit about the earth.
 
Equation (1.1) might be recognized as (within the factor of 2! , and with small
 
amplitude) as the period of a simple pendulum with length equal to the radius of the
 
earth. If anyone can construct such an item, many of us would pay to see it.
 



    
 
 
          
 

  

 
             

    
 

          
 

           
      

 
 

   
 

         

    
 

 
 

           
        

               

Problem 2: Periodic Motion: 

The motion of an object moving in one dimension is given by the function 

" 2! #x t ( ) = Acos $ t .%& T ' 

a)	 In your own words, describe the meaning of the constants T and A that appears 
in the above equation. 

b)	 Find the velocity and acceleration of the object as functions of time. 

c)	 Graph the position, velocity, and acceleration as functions of time. Be sure to 
indicate clearly on your graph the constants T and A . 

Problem 2 Solution 

" 2! #a) The figure below shows two plots of x t ( ) = Acos $ t % , one scaled to A = 1 , T = 1 ,
& T ' 

the other with A = 2 , T = 2 . 

The multiplying factor A is known as the amplitude (the amplitude is, strictly speaking,
 
is A ). The function x t ( ) assumes values between ! A and A .
 
The constant T has dimensions of time, and is known at the period of the oscillation.
 



           
   

 
  

 
 

             
 

  

 
           

             
       

 

 

For the purposes of this problem (and many similar problems), a function x t ( ) has 
periodicity T  if 

x t ( ) = x t ( + T ) . 

b) & c) Let ( ) ! t T / , so that = Acos( ( )) . The velocity of the object is u t = 2 x t ( ) u t 

d " d # du ! 2! " " 2! ## vx = x t ( ) = $ x (Asin( ) )2 = u = A sin t .% $ $ %%dt & du ' dt T T & & T '' 

Plots of the velocity corresponding to the expressions for x t ( ) are shown below. Note 
that the maximum and minimum of both plots are the same, since for the chosen scaling 
the ration /A T is the same for both plots. 



 
 

   
 

                
               

            
                  

            
    

 
            

                
              

                
            

           
       

          
      

 
              

        
          

 
                 

           
         

        
            

         
     

 
 

   

             
               

  

 
 

  

 

Problem 3: 

Imagine that one drilled a hole with smooth sides straight through the center of the earth. 
If the air is removed from this tube (and the tube doesn’t fill up with water, liquid rock or 
iron from the core), an object dropped into one end will have enough energy to just exit 
the other end after an interval of time. Your goal is to find that interval of time. The steps 
outlined below show a way of finding this time interval. Make the assumption that the 
earth has uniform mass density. 

a)	 The gravitational force on an object of mass m  located inside the earth a distance 
r < re from the center ( re is the radius of the earth) is due only to the mass of the 
earth that lies within a solid sphere of radius r . What is the gravitational force as 
a function of the distance r from the center of the earth? Express your answer in 
terms of the gravitational acceleration at the surface of the earth g and re Note: 
you do not need the mass of the earth me or the universal gravitation constant G 
to answer this question but you will need to find an expression relating me and G 
to g and re . You only need to assume that the earth is of uniform mass density. 
(You can neglect the amount of mass you drilled out.) 

b)	 Use your result of part a) to explain why the object of mass m should oscillate 
(analogous to an object attached to a spring). In particular, how long would it take 
for this object to reach the other side of the earth? 

c)	 What is the potential energy inside the earth as a function of r for the object-earth 
system? Can you think of a natural point to choose a zero point for the potential 
energy? Be careful because you will need to do a work integral to determine the 
change in potential energy when the object moves inside the earth and the 
gravitation force is no longer an inverse square when the object is inside the earth. 
Use energy considerations to find the velocity of the object when it passes 
through the center of the earth. 

Problem 3 Solutions: 

a) Choose a radial coordinate with unit vector r̂ pointing outward from the center of the 
earth. The gravitational force on an object of mass m at the surface of the earth is given 
by two expressions 

! GmmeFgrav = ! 
re
2 
r̂ = !mgr̂ .	 (3.1) 



 
 
 

             
 

   

 
                 

              
           

        
 

   

 
    

 

   

 
   

 

   

 
               

       
 

 
 

  

 
           

            
 

Therefore we can solve for the gravitational constant at the surface of the earth, 

Gme 
2 

. (3.2)
re 

g = 

When the object is a distance r from the center of the earth, the mass of the earth that 
lies outside the sphere of radius r does not contribute to the gravitational force. The only 
contribution to the gravitational force is due to the mass enclosed in the sphere of radius 
r . In terms of the (uniform) mass density, 

= ! 
4
3 
"r3 . (3.3)menclosed 

The mass density is given by 

me 
3 

(3.4)! = 
(4 / 3)"re 

And the mass enclosed is 

r3me memenclosed 3 
(4 / 3)!r3 = 3 

. (3.5)= 
(4 / 3)!re re 

Therefore the gravitational force on the object of mass m when it is a distance r from 
the center of the earth is given by 

!
= !G 

mmenclosed r̂ = !G 
mmer

3 

r̂ = !G 
mme r r̂ . (3.6)Fgrav r2 3 3r2re re 

We can use our expression for g = Gme / re
2 to find that the gravitational force on a mass 

m at a distance r from the center of the earth is given by 
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! mg Fgrav re 
r r̂ . (3.7)= ! 

b) The minus sign indicates that the force is always directed towards the center of the 
earth (restoring force) and proportional to the distance from the center of the earth. This 
is analogous to the restoring force of a spring, 

!
Fspring = !kx î (3.8) 

where the “spring constant” for gravitation is given by 

mg . (3.9)=kgrav re 

Note that in Equation (3.9), the combination kgrav = mg / re has dimensions of force 
divided by length, as do spring constants. 

Comparison of Equations (3.7) and (3.8) indicates that the object would undergo simple 
harmonic motion as if it were attached to a spring with the spring constant kgrav = mg / re . 

! 
The radial component of Newton’s Second Law, F = ma , becomes 

! 
mg d 2r (3.10)r = m 
re dt 2 

This is another example of the simple harmonic oscillation equation. Recall Newton’s 
Second Law applied to a simple spring-block resulted in an equation of the form 

d 2 x
!k x = m . (3.11)

dt 2 

Although the dependent variable has changed from x ! r , and the spring constant from 
k ! kgrav = mg / re , the form of the equation is the same. 

By analogy, the period is given by 

2! 2! 2! re= = = 2! . (3.12)T = 
" 0 kgrav / m g / re g 

where !0 = kgrav / m = g / re is the angular frequency of oscillation. The object takes 
half the time T in Equation (3.12) to reach the other side of the earth, 



 

   

 
                

                
  

 

   

 
            

        
 

   

 
           

      
      

 

   

 
            

                 
    

 

   

 
            

             
         

 

   

 

. (3.13)t1 = 
T 

2 
= ! 

r
g
e 

If the object is released from rest at the surface of the earth, the position of the object up 
to the time it reaches the center of the earth (remember, the radius r cannot be negative) 
is given by 

" 2! %r(t) = re cos t' . (3.14)#$ T & 

where T is the period of oscillation as given in Equation (3.12). The radial component of 
the velocity of the object during the same time is 

2" # &vr (t) = ! re sin 
$% 
2" t( . (3.15)

T T '

c) We can define a potential energy function for the gravitation force inside the earth 
analogous to the spring potential energy function with zero-point for potential energy 
chosen at the center of the earth, 

1 1 mg r2 r2 . (3.16)U(r) = =kgrav2 2 re 

To see this, recall that the definition of the change in potential energy between two points 
a distance r0 from the center of the earth with r0 < re and a distance rf from the center of 
the Earth with rf < re  is 

B ! ! 
rf mg !Usystem = "Wc = "$Fgrav # dr = "$ " r r̂ # dr r̂ 

rA r e0 . (3.17)
rf mg 1 mg = r dr = (r 2 " r 2 )$ r 2 r f 0 
r e e0 

Choose r0 = 0 as a zero reference point for the potential energy, U(r0 = 0) = 0 , and let 
rf = r represent any point a distance r from the center of the earth with r < re . The 
above change in potential energy between these two points is then given by 

1 mg r2 . (3.18)
2 re 

U(r) = 



                 
       

 

   

 
             

 
 

   

 
              

        
 
   
 

 
 

   

 
 

              
  

 
   
 

          
          

 
            

 

   

 
       

           
            

 

    

 

If we release the object from rest at the surface of the earth, the initial mechanical energy 
is all potential energy and is given by 

1 mg 1 re
2 = 

2 
mg re . (3.19)

re 
= U reEi ( ) = 

2 

When the object reaches the center of the earth, the mechanical energy is all kinetic 
energy, 

1 2Ef = K f = 
2 
mvcenter . (3.20) 

Since there are no external forces acting on the system, there is no external work done on 
(or by the system), the mechanical energy is constant, 

Ei = Ef (3.21) 

and 

1 1 2 

2 
mgre = 

2 
mvcenter . (3.22) 

The radial component of velocity vr ,center just before the object reaches the center of the 
earth is then 

vr ,center = ! gre . (3.23) 

Note we choose “just before” so that the velocity is radially inward in polar coordinates; 
there is no well-defined radial direction when the object is located at the origin. 

As a check, the velocity of the object while falling is, recalling Equation (3.15), 

2" # &vr (t) = ! re sin 
$% 
2" t( . (3.24)

T T '

When t = T / 4 , cos (2! / T )t ) = cos(! / 2) = 0 , and from Equation (3.14) the object is at ( 
the center of the earth. Also, sin (2! / T )t ) = sin(! / 2) = 1 and from Equation (3.24) the ( 
radial component of the velocity at the center of the earth is given by 

g re = gre . (3.25)
re 

vr , center = vr (T / 4) = ! 



 



   
 

                 
              
                  
              

         
 

 
 

 
 

        

 
 

         
 

             
 

          
          

             
            

  

 

Problem 4 

A massless spring with spring constant k is attached at one end of a block of mass M 
that is resting on a frictionless horizontal table. The other end of the spring is fixed to a
wall. A bullet of mass mb is fired into the block from the left with a speed v0 and comes 
to rest in the block. (Assume that this happens instantaneously). The block and bullet are
moving immediately after the bullet comes to rest with speed va = mbv0 / (mb + M ) . 

The resulting motion of the block and bullet is simple harmonic motion. 

a)	 Find the amplitude of the resulting simple harmonic motion. 

b)	 How long does it take the block to first return to the position x = 0 ? 

c)	 Now suppose that instead of sliding on a frictionless table during the resulting 
motion, the block is acted on by the spring and a weak friction force of constant
magnitude f . Suppose that when the block first returned to the position x = 0 , the 
speed of the block was found to be v f = mbv0 / 2(mb + M ) . How far did the block 
travel? 



   
 

             
    

 
 

 
  

  

 
     

 

 
  

  

 
 
         
 

          
 

 
     
 
 

      
 

   

 
      

 
   
 
 

      

 

   

 
          

 

Problem 4 Solution: 

The energy of the spring-object system is constant since there are no external work done 
on the system (no fricition), therefore 

1 2 1 2(mb + M )v = kx (4.1)
2 a 2 max 

where the maximum displacement 

(m + M )
x = b v = 

1 
mbv0 (4.2)max k a k(mb + M ) 

is the amplitude of the simple harmonic motion. 

Alternatively, the position of the system is given by the solution to the simple harmonic 
equation: 

x(t) = Acos!t + Bsin!t (4.3) 

where the angular frequency is given by 

(4.4)! = 
k 

mb + M 

The x-component of the velocity is given by 

vx (t) = !" Asin"t + " Bcos"t (4.5) 

At t = 0 , x(t = 0) = A = 0 , and vx (t = 0) = ! B = 
mb 

(mb + M ) 
v0 , so 

B = 
1 

! 

mb 

(mb + M ) 
v0 = 

mb + M 

k 
mb 

(mb + M ) 
v0 = 

1 

k(mb + M ) 
mbv0 (4.6) 

The system reaches maximum amplitude when !t = " / 2 . Thus from eq. (4.3) 



 
  

  

 
            

 
 

   

 
      

 

   

 
  

 

 
 

        
 
    
 

               
     

 
     
 

      
 

 
  

  

   
 

 
  

  

 
         

1 
x(t = ! / 2" ) = Bsin(! / 2) = B = m v (4.7)

k(mb + M ) b 0 . 

(b) It takes the block half a period to return to the position x = 0 . The period is 

2! mb + MT = = 2! (4.8)
" k 

So the block returns to x = 0  at time 

T ! mb + Mt1 = = = ! (4.9)
2 " k 

d) 

The work done by the friction force is given by 

W = ! fd (4.10) 

where d is the distance traveled by the system. This work is equal to the change in 
kinetic energy of the spring-bullet-block system, 

W ! E (4.11)= E1 a 

The energy when the block returns to x = 0  is 

1 ! va 
$ 

2
1 ! 1 2 $ 1 Ea (4.12)E1 = + M ) = + M )v =(mb a(mb #2 " 2 %& 4 #" 2 %& 4 

So Eq. (4.11) becomes 

1 3 3 " 1 2 % 3 mb 
2

2! fd = E ! E = ! E = ! (mb + M )va ' = ! v0 (4.13)a4 a a 4 4 #$ 2 & 8 (mb + M ) 

We can now solve for the distance traveled by the system 



 

 
  

  d = 
3 mb 

2
2
v0 (4.14)

8 (mb + M ) f 



 
      

 
          

             
           

    
 

 
 

          
 

            
 

               
  

 
            

      
 
 

   
 

      
           

     
 

   

 
        

 
   

Problem 5 Simple Harmonic Motion 

Consider an ideal spring with spring constant k . The spring is attached to an object of 
mass m that lies on a horizontal frictionless surface. The spring-mass system is 
compressed a distance x0 from equilibrium and then released with an initial speed v0 

toward the equilibrium position. 

a) What is the period of oscillation for this system?
 

b) How long will it take for the object to first return to the equilibrium position?
 

c) What is the magnitude of the velocity of the object when it first returns to the
 
equilibrium position? 

d) Draw a graph of the position and velocity of the mass as a function of time. 
Carefully label your axes and clearly specify any special values. 

Problem 5 Solutions: 

Choose an origin at the equilibrium position and positive x-direction pointing in the 
stretched direction. Then the initial position !x0 < 0 (note that x0 is a distance and hence 
positive) and v0 > 0 . Newton’s Second Law is 

!k x = m 
d 2 x 
dt 2 (5.1) 

The general solution to Eq. (5.1) is given by 

x(t) = A cos(!0 t + ") , (5.2) 



 
       

 
 
   
 

          
        

 
            

  
 
   
 

          
 

 
   
 

 
 
   
 

    
 

   

 
            

 
 
 

   

 
               

 
 
 
   
 
 

        

where !0 = k / m . The period of oscillation is therefore 

T = 2! / " 0 = 2! m / k . (5.3) 

The coefficients A and ! depend on the given set of initial conditions !x0 " x(t = 0) 
and v0 ! vx (t = 0) where x0 and v0 are positive constants. 

The x-component of the velocity of the object at time t is obtained by differentiating the 
position function, 

vx (t) = dx / dt = !" 0 Asin(" 0 t + #) . (5.4) 

To find the constants A and ! , substitute t = 0 into the Equations (5.2) and (5.4), 
yielding 

!x0 " x(t = 0) = Acos# , (5.5) 

and 

v0 = vx (t = 0) = !" 0 Asin(#) . (5.6) 

We can rewrite Eq. (5.6) as 

!
v
" 
0

0 

= Asin(#) . (5.7) 

To find the angle ! , divide Eq. (5.7) by Eq. (5.5) and taking the inverse tangent to find 
that 

$ v0 ' 
(5.8)! = tan"1 

() 
. 

%& #0 x0 

To find A , add the square of Eq. (5.7) to the square of Eq. (5.5) and take the square root 
yielding 

, (5.9) 

Then the position of the object-spring system is given by 

A = x0 
2 + (v0 / !0 )
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x(t) = x0 
2 + (v0 / !0 

v0 ) . (5.10))2 cos(!0 t + tan "1 

!0 x0 

and the x-component of the velocity of the spring-mass system is 

v0 ) . (5.11)v (t) = !" 0
2 + (v0 )2 sin(" 0 t + tan!1 

x x0 / " 0 " 0 x0 

a) The period of oscillation is given by 

T = 2! / " 0 = 2! / k / m . (5.12) 

b) The spring first reaches equilibrium at time t = t1 where x(t1) = 0 . This is satisfied 
when 

!0 t1 + " = # / 2 (5.13) 

Solving for t1 yields 

t1 = (! / 2 "#) / $0 (5.14) 

c) The object is first completely extended when the velocity is zero. This occurs when 

0 = v sin(" 0 + #) (5.15)x (t2 ) = !" 0 x0 t2 

This is satisfied when 

!0 t2 + " = # . (5.16) 
Solving for t2 yields 

t2 = (! "#) / $0 (5.17) 

Alternatively, the general solution to Eq. (5.1) is given by 

x(t) = A cos(!0 t) + Bsin(!0 t) , (5.18) 



          
          

 
          

  
 
   
 

            
         

  
   
 

     
 
   
 

 
 

   

 
        

 

 
  

  

 
       

 
     
 

       
 

 
  

  

 
   

 

 
  

  

 
           

where !0 = k / m the coefficients and A and B depend on a given set of initial 
conditions !x0 " x(t = 0) and v0 ! v(t = 0) where x0 and v0 are positive constants. 

The velocity of the object at time t is then obtained by differentiating the position 
function, 

v(t) = dx / dt = !" 0 Asin(" 0 t) + " 0 B cos(" 0 t) . (5.19) 

To find the constants A and B , substitute t = 0 into the Equations (5.2) and (5.4) Since 
cos(0) = 1 and sin(0) = 0 , the initial position at time t = 0  is 

!x0 " x(t = 0) = A . (5.20) 

The velocity at time t = 0  is 

v0 = v(t = 0) = !" 0 Asin(0) + " 0 B cos(0) = " 0 B . (5.21) 

Thus 

v0 . (5.22)A = !x0 and B = 
" 0 

Then the position of the object-spring system is given by 

v0x(t) = !x0 cos(" 0 t) + sin(" 0 t) . (5.23)
" 0 

and the velocity of the spring-mass system is 

v(t) = !0 x0 sin( k / m t) + v0 cos(!0 t) . (5.24) 

The spring first reaches equilibrium at time t = t1 

v00 = x(t1) = !x0 cos(" 0 t1) + sin(" 0 t1) (5.25)
" 0 

This can be rewritten as 

sin(!0 t1) x0!0tan(!0 t1) = (5.26)= 
cos(!0 t1) v0 

So we can solve this for the time the object first reaches equilibrium. 



 

   

 
           

 
     
 

     
 

 

  

  

 
 

 

 
  

  

 
   

 
            

 
 
     
 

   
 

 
  

  

 
         

 

 
  

  

 

1 # x0!0 & (5.27)t1 = tan"1 

(!0 $% v0 '

Although Eq. (5.27) and Eq. (5.14) do not appear equal, rewrite Eq. (5.14) as 

!0t1 = " / 2 #$ (5.28) 

Then take the sin of both sides 

$ $ v ' '
 
sin(!0t1) = sin &" / 2 # (tan#1 

%& 
0 

() )
% ! x (
0 0 

$ $ v ' ' $ $ v ' '
 
= sin(" / 2)cos & tan#1 0 ) # cos(" / 2)sin & tan#1 0 ) (5.29)


% %& ! x () ( % %& ! x () (
0 0 0 0 

$ $ v ' ' $ $ ! x ' ' 
0 0 0= cos tan#1 

) = sin & tan#1
& %& () )% !0 x0 (

) ( % %& v0 (

Thus 

1 # !0 x0 
& 

t1 = tan "1 (5.30)(!0 $% v0 '

in agreement with Eq.(5.27). 

c) The object is first completely extended when the velocity is zero. This occurs when 

0 = v(t2 ) = !0 x0 sin(!0 t2 ) + v0 cos(!0 t2 ) (5.31) 

This can be rewritten as 

sin(!0 t2 ) v0tan(!0 t2 ) = (5.32)= " 
cos(!0 t2 ) !0 x0 

So we can solve for the time when it reaches maximal stretch 

&1 # v0t2 = tan "1 " (5.33)($% ! x '!0 0 0 



 
           

 
     
 

    
 

 
  

  

 
 

 

 
  

  

 
    

 
            

           
 

   

 
      

 

   

 
    

 

   

 
      

 

   

 
            

 

Although Eq. (5.33) and Eq. (5.17) do not appear equal, rewrite Eq. (5.17) as 

!0t2 = " #$ (5.34) 

Then take the tan of both sides 

$ $ ' ' v0 v0tan(!0t2 ) = tan &" # (tan#1 

%& 
(5.35)) = # 

% !0 x0 (
) ( !0 x0 

2mv0

Thus 

1 # v0 
& 

t2 = tan "1 " (5.36)(! $% ! x '0 0 0 

in agreement with Eq. (5.33). 

Although the question did not ask for this we can use the fact that the mechanical energy 
is constant to find the amplitude at maximal stretch. Initially the mechanical energy is 

1
2


1
2


2
0E0 kx (5.37)
+
=
 

2mv0 
2

The mechanical energy when the spring is fully extended is 

1
E2 = 2 (5.38)kxmax 2 

So conservation of mechanical energy implies that 

kxmax 

1
2


1
2


1
2


2
0E0 kx = E2 (5.39)+
=
 =
 

which we can solve for the maximal stretch 

2m
v0 (5.40)xmax = x0

2 + 
k 

d) A graph of the position of the object as a function looks like 



 
           

 

A graph of the velocity as a function of time looks like 



  
 

           
                

                 
     

 
 

          
           

 
           

             
           

   
 

          
 
 

   
 

            
            

               
            

 
 

 
 

Problem 6: 

Consider an ideal spring that has an unstretched length l0 and spring constant k . Suppose 
the spring is attached to a cart of mass m that lies on a frictionless plane that is inclined 
at an angle ! from the horizontal. The given quantities in this problem are l0 , m , k  , 
! and the gravitational constant g . 

a)	 The spring stretches slightly to a new length l > l0 to hold the cart in 
equilibrium. Find the length l in terms of the given quantities. 

b)	 Now move the cart up along the ramp so that the spring is compressed a 
distance x0 from the unstretched length l0 . Then the cart is released from 
rest. What is the speed of the cart when the spring has first returned to its 
unstretched length l0 ? 

c)	 What is the period of oscillation of the cart? 

Problem 6 Solutions: 

The force diagram is shown below. As indicated in the diagram, the positive x -direction 
is taken to be down the incline, and the positive y -direction is taken to be perpendicular 
to the ramp, with positive vertical component. The origin of the x -axis is at the 
unstretched length of the spring, a distance l0 from the attachment point. 



            
     

          
              

 
 

    
 

    
 

 
  

  

 
              

             
              

    
 

 
 

    
 
     
 

              

              
            

              
 

 

 
  

  

 
           

 

The x -components of the forces are mg sin! and the spring force !k l ( ! l0 ) , with the 
minus sign indicating that at equilibrium, the spring force is directed up the ramp to hold 
the cart in place. The net force must be zero at equilibrium, so 

mg sin! " k l ( " l ) = 0 ; (6.1)0 

solving for l gives 

mg sin!l = l0 + . (6.2)
k 

b) The surface is frictionless, so mechanical energy is conserved. We have the choice of 
where to take the zero of potential energy; we have already taken x = 0  to be the zero of 
the spring potential energy, and it turns out that it’s most convenient to use this as the 
zero of potential energy as well. 

Conservation of mechanical energy is expressed as 

!K + !U = 0 . (6.3) 

The initial kinetic energy is zero (the cart is released from rest) and the final kinetic 
energy is (1 / 2)mv 2 , where v f is the final speed which we wish to find. The initial f 

potential energy is the sum of the gravitational and spring potential energies. With our 
choice of the common zero of these potential energies at x = 0 , the initial potential energy 
is 

1 2Ui = mg x0 sin! + k x0 (6.4)
2 

and the final potential energy isU f = 0 . Equaton (6.3) then becomes 



 
  

  

 
      

 

 
  

  

 
              

 

 
 

          
 

 
  

  

             
              

        
  

    

           
 

 
  

  

 
          

   
  

    

 

 
  

  

 
         
  

 

 
  

  

# # 1 2 & &((1 / 2)mv f 
2 ! 0) + 0 ! mg x0 sin" + k x0 ( = 0 . (6.5)($% $% 2 ' '

Solving for the final speed v f yields 

v f = 2 g x0 sin!+ 
k 
m 

x0 
2 . (6.6)
 

c) The free body force diagram on the cart is shown in the figure below. 

If the cart is not in equilibrium Equation (6.1) becomes 

d 2 x 
mg sin! " k x = m (6.7)

dt2 

(this is of course Newton’s Second Law). There are many ways to find the solution to 
Equation (6.7). The following method uses what we know from part a) and our intuition, 

mg sin!
in that the cart will oscillate about its equilibrium position l = l0 + . We measure 

k 
x from the unstrecthed length l0 , so introduce the auxiliary variable 

mg sin" 
. (6.8)z = x ! (l ! l0 ) = x ! 

k 

(Make sure you do not confuse the auxiliary variable z with the third Cartesian 
dz2 dx2 

coordinate.) We have = , so Equation (6.7) becomes 
dt2 dt2 

dz2 

!k z = m . (6.9)
dt2 

This is the standard harmonic oscillator equation, with well-known solutions, all of which 
have period 

mT = 2! . (6.10)
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