Simple Harmonic Motion Concept Questions

Question 1 Which of the following functions $x(t)$ has a second derivative which is proportional to the negative of the function

$$
\frac{d^{2} x}{d t^{2}} \propto-x ?
$$

1. $x(t)=\frac{1}{2} a t^{2}$
2. $x(t)=A e^{t / T}$
3. $x(t)=A e^{-t / T}$
4. $x(t)=A \sin \left(\frac{2 \pi}{T} t\right)$
5. $x(t)=A \cos \left(\frac{2 \pi}{T} t\right)$
6. None of the above
7. Two of the above

Question 2: Simple Harmonic Motion

A block of mass m is attached to a spring with spring constant k is free to slide along a horizontal frictionless surface. At $t=0$ the block-spring system is stretched an amount $x_{0}>0$ from the equilibrium position and is released from rest. What is the x-component of the velocity of the block when it first comes back to the equilibrium?

1. $v_{x}=-x_{0} \frac{T}{4}$
2. $v_{x}=x_{0} \frac{T}{4}$
3. $v_{x}=-\sqrt{\frac{k}{m}} x_{0}$
4. $v_{x}=\sqrt{\frac{k}{m}} x_{0}$
5. None of the above.

Question 3

The potential energy function $U(x)$ for a particle with total mechanical energy E is shown below.

The position of the particle as a function of time is given by

$$
\begin{equation*}
x(t)=D \cos (\omega t)+D \sin (\omega t) \tag{3.1}
\end{equation*}
$$

where $D>0$. The particle first reaches the position 3 when

1. $\omega t=0$
2. $\omega t=\pi / 4$
3. $\omega t=\pi / 2$
4. $\omega t=3 \pi / 4$
5. $\omega t=\pi$
6. $\omega t=5 \pi / 4$
7. $\omega t=3 \pi / 2$
8. $\omega t=7 \pi / 4$

Question 4: SHO and the Pendulum

Suppose the point-like object of a simple pendulum is pulled out at by an angle $\theta_{0} \ll 1 \mathrm{rad}$. Is the angular speed of the point-like object equal to the angular frequency of the pendulum?

1. Yes.
2. No.
3. Only at bottom of the swing.
4. Not sure.

Question 5: Energy Diagram 1

A particle with total mechanical energy E has position $x>0$ at $t=0$

1. escapes to infinity in the -x -direction
2. approximates simple harmonic motion
3. oscillates around a
4. oscillates around b
5. periodically revisits a and b
6. not enough information
7. two of the above.

Question 6: Energy Diagram 2

A particle with total mechanical energy E has position $x>0$ at $t=0$

1. escapes to infinity in the - x -direction
2. approximates simple harmonic motion
3. oscillates around a
4. oscillates around b
5. periodically revisits a and b
6. not enough information
7. two of the above.

Question 7: Energy Diagram 3

A particle with total mechanical energy E has position $x>0$ at $t=0$

1. escapes to infinity in the -x -direction
2. approximates simple harmonic motion
3. oscillates around a
4. oscillates around b
5. periodically revisits a and b
6. not enough information
7. two of the above

Question 8: Energy Diagram 4

A particle with total mechanical energy E has position $x>0$ at $t=0$

1. escapes to infinity in the -x -direction
2. approximates simple harmonic motion
3. oscillates around a
4. oscillates around b
5. periodically revisits a and b
6. not enough information
7. two of the above

Question 9: Energy Diagram 5

A particle with total mechanical energy E has position $x>0$ at $t=0$

1. escapes to infinity in the -x -direction
2. approximates simple harmonic motion
3. oscillates around a
4. oscillates around b
5. periodically revisits a and b
6. not enough information
7. two of the above

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

