## MITOCW | MIT8_01SCF10mod15_04_300k

When I swing a pendulum like this, the motion of the apple is approximately that of a simple harmonic oscillator. What is a simple harmonic oscillator? When the displacement from equilibrium changes in time, either co-sinusoidal or sinusoidal fashion, then we call that a simple harmonic oscillator.

We'll let this be the equilibrium position-- I call that $x$ equals $0--$ and this could be the positive value for $x$, and that's my free choice of signs. It's is the negative direction of $x$. If this motion of the object in the $x$ direction can be written as $x$ equals a times the cosine of omega $t$ plus alpha, or it could be a sine-- it makes no difference. In the case of the pendulum, theta would be theta max times the cosine of omega $t$ plus alpha or the sine, then we call this a simple harmonic oscillation.

Theta, then, is the angle where x is simply the horizontal displacement of the apple away from equilibrium. Theta is the angle-- this would be theta 0 , and this would be displacement from 0 .

In this case, I would have a simple harmonic oscillation-- in x and here I would have a simple harmonic oscillation. In theta, and the case of the pendulum, it's both simple harmonic in x as well as in theta.

This omega that you see in this equation is the angular frequency, and the period of [UNINTELLIGIBLE] angular frequency is in radians per seconds. The period of one oscillation equals 2 pi divided by omega, and that would then be in seconds.

