
Module 8: Newton’s Laws of Motion 

8.1 Newton’s First Law 

The First Law of Motion, commonly called the “Principle of Inertia,” was first realized 
by Galileo. (Newton did not acknowledge Galileo’s contribution.) Newton was 
particularly concerned with how to phrase the First Law in Latin, but after many rewrites 
Newton perfected the following expression for the First Law (in English translation): 

Law 1: Every body continues in its state of rest, or of uniform motion in a right 
line, unless it is compelled to change that state by forces impressed upon it. 

Projectiles continue in their motions, so far as they are not retarded by the 
resistance of air, or impelled downwards by the force of gravity. A top, whose 
parts by their cohesion are continually drawn aside from rectilinear motions, 
does not cease its rotation, otherwise than as it is retarded by air. The greater 
bodies of planets and comets, meeting with less resistance in freer spaces, 
preserve their motions both progressive and circular for a much longer time. 

The first law is an experimental statement about the motions of bodies. When a 
body moves with constant velocity, there are either no forces present or there are forces 
acting in opposite directions that cancel out. If the body changes its velocity, then there 
must be an acceleration, and hence a total non-zero force must be present. We note that 
velocity can change in two ways. The first way is to change the magnitude of the 
velocity; the second way is to change its direction. 

After a bus or train starts, the acceleration is often so small we can barely perceive 
it. We are often startled because it seems as if the station is moving in the opposite 
direction while we seem to be still. Newton’s First Law states that there is no physical 
way to distinguish between whether we are moving or the station is, because there is 
essentially no total force present to change the state of motion. Once we reach a constant 
velocity, our minds dismiss the idea that the ground is moving backwards because we 
think it is impossible, but there is no actual way for us to distinguish whether the train is 
moving or the ground is moving. 

8.2 Relatively Inertial Reference Frames 
! 

Suppose you choose two different reference frames moving with a relative velocity V 
with respect to each other. If the relative velocity between the two reference frames is 
constant, then the relative acceleration between the two reference frames is zero, 

!
A
 d 

! 
V
 !0
 (8.2.1)
=
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When two reference frames are moving with a constant velocity relative to each other as 
above, the reference frames are considered to be relatively inertial reference frames. 

We can reinterpret Newton’s First Law (see Section 3.1) 

Law 1: Every body continues in its state of rest, or of uniform motion in a right 
line, unless it is compelled to change that state by forces impressed upon it. 

as the Principle of Relativity: 

In relatively inertial reference frames, if there is no net force impressed on an 
object at rest in frame S, then there is also no net force impressed on the object in 
frame S ! . 

8.3 Newton’s Second Law 

Newton’s Second Law is possibly the most important experimental statement about 
motion in physics. 

Law II: The change of motion is proportional to the motive force impressed, and 
is made in the direction of the right line in which that force is impressed. 

If any force generates a motion, a double force will generate double the motion, a 
triple force triple the motion, whether that force is impressed altogether and at 
once or gradually and successively. And this motion (being always directed the 
same way with the generating force), if the body moved before, is added or 
subtracted from the former motion, according as they directly conspire with or 
are directly contrary to each other; or obliquely joined, when they are oblique, so 
as to produce a new motion compounded from the determination of both. 

Suppose that a force is applied to a body for a time interval !t . The impressed 
force or impulse produces a change in the momentum of the body, 

!p!t = !

where the momentum of a point object, discussed formally in Module ?, is p ! = mv ! . 

From the commentary to the second law, Newton also considered forces that were 
applied continually to a body instead of impulsively. The instantaneous action of the total 
force acting on a body at a time t is defining by taking the mathematical limit as the time 
interval !t becomes smaller and smaller, 

!
I

!
F
 (8.3.1)
=
 ,


!
F


d!p !p!
!t"0 !t 

total = lim #
 .
dt 

(8.3.2)
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When the mass remains constant in time, the Second Law can be recast in its more 
familiar form, 

! dv ! F total = m . (8.3.3) 
dt 

Because the derivative of velocity is the acceleration, the force is the product of mass and 
acceleration, 

F
! 

total = ma ! . (8.3.4) 

8.4 Newton’s Third Law: Action-Reaction Pairs 

Newton realized that when two bodies interact via a force, then the force on one body is 
equal in magnitude and opposite in direction to the force acting on the other body. 

Law III: To every action there is always opposed an equal reaction: or, the 
mutual action of two bodies upon each other are always equal, and directed to 
contrary parts. 

Whatever draws or presses another is as much drawn or pressed by that other. If 
you press on a stone with your finger, the finger is also pressed by the stone. 

The Third Law, commonly known as the “action-reaction” law, is the most 
surprising of the three laws. Newton’s great discovery was that when two objects interact, 
they each exert the same magnitude of force on each other. 

Consider two bodies engaged in a mutual interaction. Label the bodies 1 and 2 ! ! 
respectively. Let F1, 2 be the force on body 1 due to the interaction with body 2, and F2,1 

be the force on body 2 due to the interaction with body 1. These forces are depicted in 
Figure 8.3. 

Figure 8.3 Action-reaction pair of forces 

These two vector forces are equal in magnitude and opposite in direction, 
! ! 
F1, 2 = !F2,1 . (8.4.1) 

Example:  Free Fall 

In Chapter 4, sections 4.6 and 4.8, we considered the motion of a body interacting with 
the earth’s gravitational field near the surface of the earth. We used the experimental 
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observation that the acceleration is directed downwards and has a 
magnitude g = 9.8 m ! s "2 . We will now use Newton’s Second Law and the force law for 
the gravitational interaction to “predict” the acceleration. 

We shall again consider an object that is released at time t = 0 with an initial 
velocity v! 0 at a height h above the ground. We will neglect all influences on the object 
except for the influence of gravity. Choose coordinates with the y-axis in the vertical 
direction with ĵ pointing upwards and the x-axis in the horizontal direction with î 
pointing in the direction that the object is moving horizontally. Choose the origin to be at 
the point where the object is released. Figure 8.4 shows our coordinate system with the 
position of the object at time t and the coordinate functions x(t) and y(t) . 

Figure 8.4 A coordinate sketch for parabolic motion. 

Force Diagram 

The only force acting on the object is the gravitational interaction between the object and 
the earth. This force acts downward with magnitude m g , where m is the mass of the 
object and g = 9.8 m ! s "2 . Figure 8.5 shows the force diagram on the object. 

Figure 8.5 A force diagram on the object with the action of gravity 

The vector decomposition of the force is 

F 
! 

grav = !m g ĵ . (8.4.2) 

Should you include the force that gave the object its initial velocity on the force diagram? 
No! We are only interested in the forces acting on the object once the object has been 
released. It is a separate problem (and a very hard one at that) to determine exactly what 
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forces acted on the object before the body was released. (This issue obscured the 
understanding of projectile motion for centuries.) 

Second Law Analysis 

The force diagram reminds us that the only force is acting in the y -direction. Newton’s 
! 

Second Law states that the total vector force F total acting on the object is equal to the 
product of the mass m and the acceleration vector a ! , 

F
! 

total = ma ! . (8.4.3) 

This is a vector equation; the components are equated separately: 

Fy 
total = ma y , (8.4.4) 

Fx 
total = ma x . (8.4.5) 

Thus the vector equation in the y -direction becomes 

!m g = ma y . (8.4.6) 

Therefore the y -component of the acceleration is 

ay = !g. (8.4.7) 

We see that the acceleration is a constant and is independent of the mass of the 
object. Notice that ay < 0 . This is because we chose our positive y -direction to point 
upwards. The sign of the y -component of acceleration is determined by how we chose 
our coordinate system. 

Since there are no horizontal forces acting on the object, 

Fx 
total = 0 , (8.4.8) 

and we conclude that the acceleration in the horizontal direction is also zero, 

ax = 0 . (8.4.9) 

This tells us that the x -component of the velocity remains unchanged throughout the 
flight of the object. 
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Newton’s Second Law provides an analysis that determines that the acceleration 
in the vertical direction is constant for all bodies independent of the mass of the object, 
thus confirming Galileo’s Law of Freeing Falling Bodies. Notice that the force law 
Equation (8.4.2) generalizes the experimental observation that objects fall with constant 
acceleration. Our prediction is predicated on this force law and if subsequent 
observations show the acceleration is not constant they we either must include additional 
forces (for example, air resistance) or modify the force law (for objects that are no longer 
near the surface of the earth). 

8.5 Worked Examples 

Example 8.5.1: Staircase 

An object of given mass m starts with a given velocity v0 and slides an unknown 
distance s along a floor and then off the top of a staircase. The goal of this problem is to 
find the distance s . The coefficient of kinetic friction between the object and the floor is 
given by µk . The object strikes at the far end of the third stair. Each stair has a given rise 
of h and a given run of d . Neglect air resistance and use g for the gravitational constant. 

a) Briefly describe how you intend to model the motion of the object. What are the
given quantities in this problem? 

b) What is the distance s that the object slides along the floor? Express your answer 
in terms of the given quantities only. 

Answer: 

a) There are two distinct stages to the object’s motion, the initial horizontal motion (the
floor must be assumed horizontal) and the motion in free fall. The given final position of
the object, at the far end of the third stair, will determine the horizontal component of the
velocity at the instant the object left the top of the stair. This in turn determined the time
the object decelerated, and the deceleration while on the floor determined the distance
traveled on the floor. 
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The given quantities are m , v0 , µk , g , h and d . 

b) From the top of the stair to the far end of the third stair, the object is in free fall. Take 
the positive î -direction to be horizontal, directed to the left in the figure, take the positive 
ĵ -direction to be vertical (up) and take the origin at the top of the stair, where the object 
first goes into free fall. The components of acceleration are ax = 0 , ay = !g , the initial 
x -component of velocity will be denoted vx,0 , the initial y -component of velocity is 
vy ,0 = 0 , the initial x -position is x0 = 0 and the initial y -position is y0 = 0 . The 
equations describing the object’s motion as a function of time t are then 

x t ( ) = x0 + vx,0 t + 
1 
a t 2 = v t (8.5.1) 
2 x x,0 

y t ( ) = y0 + vy ,0 t + 
1 a t 2 = ! 

1 gt 2. (8.5.2) 
2 y 2 

It’s crucial to see that in this notation and that given in the problem, vx,0 < v0 . 

In the above equations, Eq. (8.5.1) may be solved for t to give 

t = 
x t ( ) . (8.5.3) 
vx,0 

Substituting Eq. (8.5.3) into Eq. (8.5.2) and eliminating the variable t , 

y t ( ) = ! 
1 x2 ( ) t . (8.5.4) 

v2 
g

x,0 
2 

Eq. (8.5.4) can now be solved for the square of the horizontal component of the velocity, 

2 1 x2 ( ) t . (8.5.5) vx,0 = !

2 
g 
y t ( )


At the far end of the third stair, x = 3d and y = !3h ; substitution into Eq. (8.5.5) gives 

2 3gd 2 . (8.5.6) vx,0 = 
2h 

For the horizontal motion, use the same coordinates with the origin at the edge of the 
landing. The forces on the object are gravity mg ! = !mg ̂j , the normal force N 

! 
= N ĵ and 
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the kinetic friction force f 
! 
= ! f î . The components of the vectors in Newton’s Second k k 

Law, F 
! 
= ma ! , are 

! fk = ma x 
N ! mg = ma y . 

(8.5.7) 

The object does not move in the y -direction; ay = 0 and thus from the second expression 
in (8.5.7) N = m g . The magnitude of the frictional force is then f = µ N = µ mg , and k k k 

the first expression in (8.5.7) gives the x -component of acceleration as a = !µ g . Since x k 

the acceleration is constant the x -component of the velocity is given by 

vx ( ) t = v0 + a t x (8.5.8) 

where v0 is the x -component of the velocity of the object when it just started sliding 
(this is a different from the x -component of the velocity when it just leaves the top 
landing, a quantity we denoted by earlier by vx,0 ). The displacement is given by 

x t ( ) ! x = v t + 
1 
a t 2. (8.5.9) 0 0 2 x 

Denote the time the block is decelerating as t1 . The initial conditions needed to solve the 
kinematic problem are the given v0 (assuming we’ve “reset” our clocks appropriately), 
v ( ) = v as found above, = !s and x t = 0t x0 ( ) . (Note that in the conditions for the x 1 x,0 1

initial and final position, we’ve kept the origin at the top of the stair. This is not 
necessary, but it works. The important matter is that the x -coordinate increases from 
right to left.) During this time, the block’s x -component of velocity decreases from v0 to 
v ( ) = v with constant acceleration a = !µ gt , Using the initial and final conditions, x 1 x,0 x k 

and the value of the acceleration, Eq. (8.5.9) becomes 

1 s = v t 0 1 ! µk g t 1
2 (8.5.10) 

2 

and we can solve Eq. (8.5.8) for the time the block reaches the edge of the landing, 

vx,0 ! v0 v0 ! vx,0 . (8.5.11) t1 = = 
!µk g µk g 

Substituting Eq. (8.5.11) into Eq. (8.5.10) yields 

8 



2 
" v0 ! vx,0 

%
# 
! 
1 " v0 ! vx,0 

%
# 

(8.5.12) s = v0 $ 
& µk g ' 2 

µk g 
&
$ µk g ' 

and after some algebra, we can rewrite Eq. (8.5.12) as 

" v0 ! vx,0 #
% ! 
1 " v0 ! vx,0 # 

2 
v0
2 

! 
vx,0 

2 

. (8.5.13) s = v0 $ µ g 2 
µk g $ µ g % = 

2µ g 2µ g& k ' & k ' k k 

Substituting Eq. (8.5.6) for vx
2
,0 into Eq. (8.5.13), yields the distance the object traveled 

on the landing, 

2 3 d 2 v0 ! 
s = 2 

g
h . (8.5.14) 

2µk g 
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8.5.2 Example: Cart Moving on a Track 

Consider a cart that free to move along a horizontal track (Figure 8.6). A force is applied 
to the cart via a string that is attached to a force sensor mounted on the cart, wrapped 
around a pulley an attached to a block on the other end. When the block is released the 
cart will begin to accelerate. The force sensor and cart together have a total mass m1 , and 
the suspended block has mass m2. . You may neglect the small mass of the string and 
pulley, and assume the string is inextensible. The frictional force is modeled as a 
coefficient of kinetic friction µk between the cart and the track (almost all of the friction 
is in the wheel bearings, and the model is quite good). What is the acceleration of the 
cart? What is the tension in the string? 

Figure 8.6 A falling block will accelerate a cart on a track via the pulling force of the 
string. The force sensor measures the tension in the string. 

In general, we would like to draw free-body diagrams on all the individual bodies 
(cart, sensor, pulley, rope, and block) but we can also choose a system consisting of two 
(or more) bodies knowing that the forces of interaction between any two bodies will 
cancel in pairs by Newton’s Third Law. In this example, we shall choose the sensor/cart 
as one free-body, and the block as the other free-body. The free-body force diagram for 
the sensor/cart is shown in Figure 8.7. There are three forces acting on the sensor/cart: the ! 
gravitational force, the pulling force T s, string of the string on the force sensor, and the 
contact force between the track and the cart. In Figure 8.7, we decompose the contact ! 
force into its two components, the kinetic friction force fk = ! fk î and the normal 

force, N
! 

1 = N1 ĵ . 

Figure 8.7 Force diagram on sensor/cart with a vector decomposition of the contact force 
into horizontal and vertical components 
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The cart is only accelerating in the horizontal direction with a! 1 = ax ,1 î , so the total 

component of the force in the vertical direction must be zero, ay ,1 = 0 . We can now apply 
Newton’s Second Law in the horizontal and vertical directions and find that 

î : Ts, string ! fk = m1ax ,1 (8.5.15) 
ĵ : N1 ! m1g = 0. 

From the second equation in (8.5.15), we conclude that the normal component is 

N1 = m1g . (8.5.16) 

We use Equation 3.5.8 for the kinetic friction force law, and Equation (8.5.16) for the 
normal force to find that the magnitude of the kinetic friction force is 

fkinetic = µk N1 = m1g . (8.5.17) 

The first equation in (8.5.15) then becomes 

Ts, string ! µk m1g = m1ax ,1 . (8.5.18) 

The force diagram for the block is shown in Figure 8.8. The two forces acting on ! 
the block are the pulling force TB, string of the string and the gravitational force m2g ! . 

Figure 8.8 Forces acting on the block 

We now apply Newton’s Second Law to the block and find that 

ĵ : m2 g ! TB, string = m2ay , B . (8.5.19) 
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In Equation (8.5.19), the symbol ay , B represents the component of the 
acceleration with sign determined by our choice of direction for the unit vector. Note that 
we made a different choice of direction for the unit vector in the vertical direction in the 
free-body diagram for the block shown in Figure 8.8 than in the free-body diagram for 
the sensor/cart shown in Figure 8.7. Each free-body diagram has an independent set of 
unit vectors that define a sign convention for vector decomposition of the forces acting on 
the free-body and the acceleration of the free-body. In our example, with the unit vector 
pointing downwards in Figure 8.8, if we solve for the component of the acceleration and 
it is positive, then we know that the direction of the acceleration is downwards. 

There is a second subtle way that signs are introduced with respect to the forces acting on 
a free-body. In our example, the force between the string and the block acting on the 
block points upwards, so in the vector decomposition of the forces acting on the block 
that appears on the left-hand side of Equation (8.5.19), this force has a minus sign and the 
quantity TB, string is assumed positive. However, if for some reason we were uncertain 
about the direction of the force between the string and the block acting on the block, and 
drew the arrow downwards, then when we solved the problem we would discover that 
TB, string is negative, indicating that the force points in a direction opposite the direction of 
the arrow on the free-body diagram. 

Our assumption that the mass of the rope and the mass of the pulley are negligible 
enables us (see the Appendix to this chapter) to assert that the tension in the rope is 
uniform and equal in magnitude to the forces at each end of the rope, 

Ts, string = TB, string = T . (8.5.20) 

We also assumed that the string is inextensible (does not stretch). This implies that the 
rope, block, and sensor/cart all have the same magnitude of acceleration, 

ax ,1 = ay , B ! a . (8.5.21) 

Using Equations (8.5.20) and (8.5.21), we can now rewrite the equation of motion for the 
sensor/cart, Equation (8.5.18), as 

T ! µk m1g = m1a , (8.5.22) 

and the equation of motion (8.5.19) for the block as 

m2 g ! T = m2a . (8.5.23) 
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Since we have only two unknowns T and a , we can now solve the two equations (8.5.22) 
and (8.5.23) simultaneously for the acceleration of the sensor/cart and the tension in the 
rope. We first solve Equation (8.5.22) for the tension 

T = µk m1g + m1a (8.5.24) 

and then substitute Equation (8.5.24) into Equation (8.5.23) and find that 

m2 g ! (µk m1g + m1a) = m2a . (8.5.25) 

We can now solve Equation (8.5.25) for the acceleration, 

m2 g ! µk m1g 
. (8.5.26) a = 

m2 + m1 

Substitution of Equation (8.5.26) this into Equation (8.5.24) gives the tension in 
the string, 

T = µk m1g + m1a 
m2 g ! µk m1g 

= µk m1g + m1 (8.5.27) 
m2 + m1 

= (µk + 1) 
m2m1 g. 

m2 + m1 

In this example, we applied Newton’s Second Law to two free bodies, one a 
composite body consisting of the sensor and the cart, and the other the block. We 
analyzed the forces acting on each body and also any constraints imposed on the 
acceleration of each body. We used the force laws for kinetic friction and gravitation on 
each free body system. The three equations of motion enable us to determine the forces 
that depend on the parameters in the example: the tension in the rope, the acceleration of 
the bodies, and normal force between the cart and the table. 

Example 8.5.3 Pulleys and Ropes Two blocks with masses m1 and m2 such that 
m1 << m2 are connected by a massless inextensible string and a massless pulley as shown 
in the figure below. The pulley is rigidly connected to the top of a wedge with angle ! . 
The coefficient of friction between the blocks is µ . The surface between the lower block 
and the wedge is frictionless. The goal of this problem is to find the magnitude of the
acceleration of each block. 
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a) Write down a plan for finding the magnitude of the acceleration of each block. 
Make sure you clearly state which concepts you plan to use to calculate any 
relevant physical quantities. Also clearly state any assumptions you make. Be sure
you include any diagrams or sketches that you plan to use. 

b) What are the magnitudes of the acceleration of the two blocks? 

Solution: We shall apply Newton’s Second Law to each block. Since the blocks are
constrained by the rope, the accelerations of the blocks must be related. We should be
able to then simultaneously solve the equations of motion for each block to find the
magnitude of the acceleration. We begin by choosing a coordinate system shown in 
Figure below. 

We then draw free body force diagrams for each object. We show these in Figures below. 

Newton’s Second law on object 1 becomes 

ĵ : N " m g cos ! = 0 (8.5.28) 12 1 
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î : m g sin ! + ( fk ) "T = m a . (8.5.29) 1 12 1 1 x1 

Newton’s Second law on object 2 becomes 

ĵ : N " N " m g cos ! = 0 (8.5.30) 2W 21 2 

ˆ : m g 2 ! " ( 21 "T = 2 x .i sin fk ) 2 m a 2 (8.5.31) 

We can use Eq. (8.5.28) to solve for the normal force between the surfaces, 

N12 = m g 1 cos ! (8.5.32) 

We note that because we assumed that the string is massless and inextensible the tension 
in the string is uniform, so 

T ! T1 = T2 . (8.5.33) 

The contact force between the blocks form an action-reaction pair. When we decompose
this force into its tangent (kinetic friction) and perpendicular (normal force) components, 
we have that 

fk ! ( fk )12 = ( fk )21 . (8.5.34) 

Also we model the kinetic friction by the force law 

fk = µN12 . (8.5.35) 

Using Eq. (8.5.28) for the magnitude of the normal force, the kinetic friction force ahs
magnitude 

f = µN = µm g cos ! . (8.5.36) k 1 

Finally we note that the x-components of the accelerations of the two objects are related 
by 

a ! ax2 = "ax1 . (8.5.37) 

Note that a is also the magnitude of the acceleration fo the blocks because we expect that 
a ! a > 0 . Thus using Eqs. (8.5.37), (8.5.36), and (8.5.36), we can rewrite Eqs. (8.5.29) x2 

as 

m g sin ! + µm g cos ! "T = "m a (8.5.38) 1 1 1 

and Eq. (8.5.31) as 
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2 sin ! " µm g 1 cos ! "T = m a . (8.5.39) m g 2 

We have two unknowns T and a , and two independent equations so we can 
algebraically solve for the magnitude of the acceleration of the blocks. 

We subtract Eq. (8.5.38) from Eq. (8.5.39) yielding after some simplifications yielding 

((m2 ! m1)g sin" ! 2µm1 cos")g = (m1 + m2 )a . (8.5.40) 

Thus we can solve Eq. (8.5.40) for the magnitude of the acceleration of the blocks 

(m2 ! m1)sin" ! 2µm1 cos" 
g . (8.5.41) a = 

m1 + m2 

In the following example the accelerations of various moving objects are related by 
geometric constraint conditions. The key to solving such constraints is to find a 
relationship between a constant quantity such as the length of a string connecting various 
moving objects and the positions of the various objects.  Then taking two derivatives of 
this length will produce the constraint relationship between the accelerations, If the
constraint condition Eq. (8.5.37) is not immediately obvious, consider that the length of
the string is given by 

l = x1 + x2 + ! R , (8.5.42) 

where R is the radius of the pulley. Since the length of the string is constant we can 
differentiate Eq. (8.5.42) twice with respect to time and find that 

2 2 2 2d l d x 1 d x 2 d R 
= + + !. (8.5.43) 

dt 2 dt 2 dt 2 dt 2 

Since R and l are constants 

2 2d l d R 
= 0, and ! = 0 . (8.5.44) 

dt 2 dt 2 

Therefore Eq. (8.5.43) becomes 

2 2d x d x 0 = 1 2 

dt 2 
+ 
dt 2 

= ax1 + ax2 (8.5.45) 

Thus justifying Eq. (8.5.45). 
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Example 8.4.4 Pulleys and Ropes Constraint Conditions 

Consider the arrangement of pulleys and blocks shown in the figure.  The pulleys are
assumed massless and frictionless and the connecting strings are massless and 
unstretchable.  Denote the respective masses of the blocks as m1 , m2 and m3 . The upper 
pulley in the figure is free to rotate but its center of mass does not move.  Both pulleys 
have the same radius R . 

a) How are the accelerations of the objects related? 

b) Draw force diagrams on each moving object. 

c) Solve for the accelerations of the objects and the tensions in the ropes. 

Solution: Choose an origin at the center of the upper pulley. Introduce coordinate
functions for the three moving blocks, y1 , y2 and y3 . Introduce a coordinate function yP 

for the moving pulley (the pulley on the lower right in the figure). Choose downward for 
positive direction; the coordinate system is shown in the figure below then. 
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a) The length of string A is given by 

lA = y1 + yP + ! R (8.5.46) 

where ! R is the arclength that the rope is in contact with the pulley. This length is
constant, and so the second derivative with respect to time is zero, 

2 2 2 

0 = 
d l 

2 
A = 

d y 
2
1 + 
d y 

2 
P = ay ,1 + ay P , . (8.5.47) 

dt dt dt 

Thus block 1 and the moving pulley’s components of acceleration are equal in magnitude
but opposite in sign, 

ay P = ! (8.5.48) , ay ,1 . 

The length of string B is given by 

lB = ( y3 " yP ) + ( y2 " yP ) + ! R = y3 + y2 " 2yP + ! R (8.5.49) 

where ! R is the arclength that the rope is in contact with the pulley. This length is also 
constant so the second derivative with respect to time is zero, 

2 2 2 2d l B d y 2 + 
d y 3 d y P = a + a ! 2a , . (8.5.50) = ! 20 = 

dt 2 dt 2 dt 2 dt 2 y ,2 y ,3 y P 

We can substitute Equation (8.5.48) for the pulley acceleration into Equation (8.5.50)
yielding the constraint relation between the components of the acceleration of the three 
blocks, 

0 = ay ,2 + ay ,3 + 2ay ,1 . (8.5.51) 
b) Free Body Force diagrams: 

The forces acting on block 1 are: the gravitational force m1g 
! and the pulling force T 

! 
1,r of 

the string acting on the block 1. Since the string is assumed to be massless and the pulley 
is assumed to be massless and frictionless, the tension T in the string is uniform and A

equal in magnitude to the pulling force of the string on the block. The free body diagram 
is shown below. 
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Newton’s Second Law applied to block 1 is then 

j m g !T = m a . (8.5.52) ˆ : 1 A 1 y ,1 

The forces on the block 2 are the gravitational force m2g 
! and the string holding the 

block, T 
! 
2,r , with magnitude TB . The free body diagram for the forces acting on block 2 

are shown below. 

Newton’s second Law applied to block 2 is 

j m g !T = m a . (8.5.53) ˆ : 2 B 2 y ,2 

The forces on the block 3 are the gravitational force m3g 
! and the string holding the 

block, T 
! 
3,r , with magnitude TB . The free body diagram for the forces acting on block 3 

are shown below. 

Newton’s second Law applied to block 3 is 

j m g !T = m a . (8.5.54) ˆ : 3 B 3 y ,3 
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The forces on the moving pulley are the gravitational force mP g 
! 
= 0 
! 

(the pulley is 
assumed massless); string B pulls down on the pulley on each side with a force, T 

! 
, ,P B

which has magnitude TB . String A holds the pulley up with a force T 
! 
, with the P A

magnitude T equal to the tension in string A . The free body diagram for the forcesA

acting on the moving pulley are shown below. 

Newton’s second Law applied to the pulley is 

ĵ : 2 TB !TA = mP a , = 0 . (8.5.55) y P 

Since the pulley is massless we can use this last equation to determine the condition that
the tension in the two strings must satisfy, 

2TB = TA (8.5.56) 

We are now in position to determine the accelerations of the blocks and the tension in the
two strings. We record the relevant equations as a summary. 

0 = ay ,2 + ay ,3 + 2ay ,1 (8.5.57) 
m g !T = m a (8.5.58) 1 A 1 y ,1 

m g 2 !TB = 2 (8.5.59) m a y ,2 
m g !T = m a (8.5.60) 3 B 3 y ,3 

2TB = TA . (8.5.61) 

There are five equations with five unknowns, so we can solve this system. We shall first
use Equation (8.5.61) to eliminate the tension T in Equation (8.5.58), yielding A

m g ! T = m a . (8.5.62) 1 2 B 1 y ,1 

We now solve Equations (8.5.59), (8.5.60) and (8.5.62) for the accelerations, 

TB (8.5.63) 
m2 

ay ,2 = g ! 
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ay ,3 = g ! 
TB (8.5.64) 
m3 
2TB . (8.5.65) 
m1 

ay ,1 = g ! 

We now substitute these results for the accelerations into the constraint equation, 
Equation (8.5.57), 

% . (8.5.66) 
m2 m3 m1 & m2 m3 m1 ' 

0 = g # 
TB + g # 

TB + 2g # 
4TB = 4g #TB $

! 1 1 4 " 
+ + 

We can now solve this last equation for the tension in string B , 

g m m m TB = 
4g 

= 
4 1 2 3 . (8.5.67) 

! 1 1 4 " m m + m m + 4m m 1 3 1 2 2 3+ +# $ 
% m2 m3 m1 & 

From Equation (8.5.61), the tension in string A is 

8 1 2 . (8.5.68) TA = 2TB = 
g m m m 3 

m m + m m + 4m m 1 3 1 2 2 3 

We find the acceleration of block 1 from Equation (8.5.65), using Equation (8.5.67) for 
the tension in string B, 

2T 
= g ! 

8 2 3 m m 3 + m m 2 ! 4m m 3 . (8.5.69) a = g ! B g m m 1 1 2= gy ,1 m m m + m m + 4m m m m + m m + 4m m 1 1 3 1 2 2 3 1 3 1 2 2 3 

We find the acceleration of block 2  from Equation (8.5.63), using Equation (8.5.67) for 
the tension in string B, 

T 
= g ! 

4g m m !3m m + m m + 4m m ay ,2 = g ! B 1 3 1 3 1 2 2 3 . (8.5.70) 
m m + 4 

= g 
m m + m m 4m m 3m2 1 3 + m m 1 2 m m 2 3 1 3 1 2 + 2 

Similarly, we find the acceleration of block 3 from Equation (8.5.64), using Equation
(8.5.67) for the tension in string B, 

T 4 g m m 1 3 ! 3 1 2 m m 3 . (8.5.71) ay ,3 = g ! B = g ! 1 2 = g
m m m m + 4 2 

m m m + m m + 4m m m m + m m + 4m m 3 1 3 1 2 2 3 1 3 1 2 2 3 

As a check on our algebra we note that 

21 



2a1, y + a2, y + a3, y = 

m m + m m ! 4m m !3m m + m m + 4m m m m ! 3m m + 4m m 2g 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3+ g + g (8.5.72) 
m m + m m + 4m m m m + m m + 4m m m m + m m + 4m m 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3 

= 0. 

Example 8.5.5 A 45o wedge is pushed along a table with constant acceleration A 
! 
= A ̂i 

(see figure for choice of axes and positive directions) according to an observer at rest
with respect to the table. A block of mass m slides without friction down the wedge. 
Find its acceleration with respect to an observer at rest with respect to the table. Write
down a plan for finding the magnitude of the acceleration of the block. Make sure you 
clearly state which concepts you plan to use to calculate any relevant physical quantities. 
Also clearly state any assumptions you make. Be sure you include any free body force
diagrams or sketches that you plan to use. 

Solution: 

We shall apply Newton’s Second Law to the object sliding down the wedge. Since the
wedge is accelerating, there is a constraint relation between the x and y components of
the acceleration of the object. In order to find that constraint we choose a coordinate 
system for the wedge and object sliding down the wedge shown in the figure below. 

We shall find the constraint relationship between the accelerations by a geometric
argument. From the figure above, we see that 

ym (8.5.73) 
l " (xm " xw ) 

tan ! = 

therefore 
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ym = (l " (xm " xw )) tan ! . (8.5.74) 

If we differentiate Eq. (8.5.74) twice with respect to time noting that 

2d l 
= 0 (8.5.75) 

dt 2 

we have that 

2 2 2d y " d x d x # 
dt 2 

m = $% dt 2 
m $ 

dt 2 
w 

(
& tan ! . (8.5.76) 

' 

Therefore 

aym = "(axm " A) tan ! (8.5.77) 

where 

2d x wA = 2 . (8.5.78) 
dt 

We now draw a free body force diagram for the object (figure below) 

Newton’s Second Law becomes 

ˆ : sin xm N ma ! =i . (8.5.79) 

ˆ : cos ym N mg ma ! " =j (8.5.80) 

We can solve for the normal force from Eq. (8.5.79): 
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xm N = 
ma (8.5.81) 
sin ! 

We now substitute Eq. (8.5.77) and Eq. (8.5.81) into Eq. (8.5.80) yielding 

ma xm cos ! " mg = m( ( axm " ) tan !) .	 (8.5.82) " A 
sin ! 

We now clean this up yielding 

ma xm (cotan ! + tan !) = m g ( + A tan !)	 (8.5.83) 

Thus the x-component of the acceleration is then 

g + A tan !	 (8.5.84) a = xm cotan ! + tan ! 

From Eq. (8.5.77), the y-component of the acceleration is then 
" g + A tan !

$ A
#
& tan ! . (8.5.85) aym = $(axm $ A) tan ! = $

'
% cotan ! + tan ! ( 

This simplifies to 

A " g tan ! (8.5.86) a = ym cotan ! + tan ! 

! !	 !When ! = 45 , cotan 45 = tan 45 = 1, and so Eq. (8.5.84) becomes 

a = 
g + A	 (8.5.87) xm 2 

and Eq. (8.5.86) becomes 

a = 
A ! g .	 (8.5.88) ym 2 

The magnitude of the acceleration is then 

" g + A # 
2 

" A ! g #
% 

2	

(8.5.89) 2 2a = axm + aym =	 $
& 2 '

% + 
&
$ 2 ' 
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! g 2 + A2 "
$ .	 (8.5.90) a =	 # 

% 2 & 

8.6 Friction Force as a Linear Function of Velocity (Advanced Topic) 

In many physical situations the force on an object will be modeled as depending on the 
object’s velocity.  We have already seen static and kinetic friction between surfaces 
modeled as being independent of the surfaces’ relative velocity.  Common experience 
(swimming, throwing a Frisbee) tells us that the friction force between an object and a 
fluid can be a complicated function of velocity.  Indeed, these complicated relations are 
an important part of such topics as aircraft design. 

A reasonable model for the frictional force on an object m moving at low speeds through 
a viscous medium is 

F
! 

friction = !" mv !	 (8.6.1) 

where ! is a constant that depends on the properties (density, viscosity) of the medium 
and the size and shape of the object.  Note that ! has dimensions of inverse time, 

dim "#Force $% M & L & T'2 

dim[! ] = = = T'1 . (8.6.2) 
dim[mass] & dim "#velocity $% M & L & T'1 

The minus sign in Equation (8.6.1) indicates that the frictional force is directed against 
the object’s velocity (relative to the fluid). 

! 
In a situation where Ffriction is the net force, Newton’s Second Law becomes 

!" mv ! = ma !	 (8.6.3) 

and so the acceleration is 

a ! = !" v ! .	 (8.6.4) 

The acceleration has no component perpendicular to the velocity, and in the absence of 
other forces will move in a straight line, but with varying speed. Denote the direction of 
this motion as the x -direction, so that Equation (8.6.4) becomes 

d v 
a = x = !" v .	 (8.6.5) x dt x 
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Equation (8.6.5) is now a differential equation. For our purposes, we’ll create an initial-
condition problem by specifying that the initial x -component of velocity is v(t = 0) = vx0 . 

The differential equation in (8.6.5) is known as a separable equation, in that the equation 
may be rewritten as 

d v x = !" dt . (8.6.6) 
v x 

and each side can be separably integrated.  The integration in this case is simple, leading 
to 

v (t )x d v t 

! x = "# ! dt . (8.6.7) 
vx 0 

vx 0 

The left hand side is 

LHS = ln(vx ) 
v

v

x (t ) 
= ln(vx (t) ! ln(vx0 ) = ln(vx (t) / vx0 ) (8.6.8) 

x 0 

and the right hand side is 

RHS = !" t (8.6.9) 

Equating the two sides yields 

ln(vx (t) / vx0 ) = !" t (8.6.10) 

Exponentiate each side of the above equation yielding 

vx (t) / vx0 = e!" t (8.6.11) 

Thus the x-component of the velocity as a function of time is given by 

vx (t) = vx0e
!" t (8.6.12) 

A plot of vx vs. t is shown in the figure below with initial conditions vx0 = 10 m/s 
and ! = 0.5 N/J . 
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Example: An object moving the x-axis with an initial x-component of the velocity 
vx (t = 0) = vx0 experiences a retarding frictional force whose magnitude is proportional to 
the square of the speed (a case known as Newtonian Damping), 

! 
Ffriction = !" mv2 (8.6.13) 

Show that the x-component of the velocity of the object as a function of time is given by 

1 
vx (t) = vx0 , (8.6.14) 

1+ t / ! 
and find the constant! . 


Solution: Newton’s Second Law can be written as


d v 
!" v2 = x . (8.6.15) x dt 

Differentiating our possible solution yields 

d v x 1 1 1 
vx 

2 (8.6.16) 
dt 

= !vx0 " (1+ t / " )2 vx0 " 
= ! 

Substituting into the Second Law yields 

v2 . (8.6.17) !" v2 = ! 
1 

x vx0 # 
x 

Thus our function is a solution providing that 
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1 . (8.6.18) ! = 
vx0 " 

A plot of vx vs. t is shown in the figure below with initial conditions vx0 = 10 m/s 
and ! = 0.5 N/J . 

The figure below shows the two x-component of the velocity functions Eq.  and Eq. 
plotted on the same graph . 

8.7: Linear Friction with Gravity (Advanced Topic) 

A common extension of the above example is to have an object falling through the same
viscous medium, subject to gravity but no other forces. Taking the positive y -direction 
to be downward, the equation of motion becomes 

d v 
a = y = g ! " v . (8.7.1) y dt y 

Note that the expression in Equation (8.7.1) is valid for the vertical velocity directed 
upwards ( vy < 0 ) or downwards ( vy > 0 ). We expect that in the limit of long times and 
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no other forces, any object would eventually fall straight down. We will use the 
expectation to simplify our methods of solution, starting with an ansatz that assumes a
terminal velocity (actually, a terminal speed) vterm ; the terminal velocity is that for which 
the acceleration given by Equation (8.7.1) is zero, vterm = g / ! (note that vterm has 
dimensions of velocity).  At this point, it helps to rewrite Equation (8.7.1) as 

d v y = ! (v " v ) (8.7.2) 
dt term y 

If we have, as before, an initial-value problem, in this case the initial condition 
being vy (0) = vy0 , our trial solution will be one that has vy (0) = vy0 but which approaches 

vterm for large times. From our previous experience, we suspect that a function involving 
an exponential will be more likely to lead to success than a rational function. So, our trial
function will be 

v = v + (v ! v )e! t /" . (8.7.3) y term y0 term 

Performing the differentiation, 

d v y 1 
= !

dt " 
(vy0 ! vterm )e! t /" 

(8.7.4) 
1 

= ! (v ! v )
" y term 

and we see that v is a solution to the problem with the choice; y 

!" tv = v + (v ! v )e . (8.7.5) y term y0 term 

A plot of the ratio vy / v as a function of t1 = ! t is shown in Figure 8.19, for the four term 

different initial conditions 

1: vy0 = 2vterm ; vy1 = vterm (1+ e!" t ) , 

2: vy0 = vterm ; vy 2 = vterm , 

3: vy0 = 0; vy3 = vterm (1! e!" t ) , 

4: vy0 = !vterm ; vy4 = vterm (1! 2e!" t ) . 

Note that the last of these is a situation where the object is initially moving upward. 
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Figure 8.19 Falling objects with friction 

The success of our ansatz suggests a more direct technique. In Equation (8.7.2), make 
the substitution u = vy ! vterm . Recognizing that du / dt = dvy / dt , that equation becomes 

d u 
= !" u (8.7.6) 

dt 

and the initial condition becomes u(t = 0) = vy0 ! vterm . This has been reduced to a 
problem done previous (the previous section) and we can just quote that result; 

!" tv ! v = (v ! v )e (8.7.7) y term y0 term 

and we’re done. 

In the result, the behavior of the solution should be checked in the large and small limits
of time. From the graphs, or from the analytic form, vy ! vterm as t !" . For small 
times t ! 1/ ! , consider the solution expressed as 

v = v (1! e!" t ) + v e!" t y term y0 

g !" t !" t = (1! e ) + v e
" y0 

(8.7.8) 
! 

g (" t) + v 
" y0 

= g t + vy0 

to zero order in ! , as expected. 
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8.8: Tension in a Rope Wrapped Around a Pulley (Advanced Topic) 

Consider the general case of a string or rope wrapped a quarter-turn about a frictionless
pulley, as in Example 8.4.2 in the text. The force diagram for the pulley is shown in 
Figure 8.8.1(a). The forces acting on the pulley are the downward pulling force T

! 
P, rope of 

the rope connecting the pulley and the block (called a more general “object” in this 
appendix, the force F

! 
P,support exerted on the pulley by the support, and the gravitational 

force mP g ! on the pulley. Note that in the limit of a massless pulley, the arrows
representing the pulley’s weight would be vanishingly small; these vectors are included 
in the figure for completeness and in anticipation of considering the more general case. 

Figure 8.8.1 (a) Force diagram on pulley (b) Vector decomposition of forces on pulley 

In Figure 8.8.1(b), the support force and the rope force on the pulley are 
decomposed into vector components. If we assume that the mass mP of the pulley is 
negligible, we can ignore the gravitational force. The center of mass of the pulley is fixed 
hence the acceleration of the pulley is zero. We can now apply Newton’s Second Law in 
each direction shown in Figure 8.8.1(b): 

! T = 0 (8.8.1) î : ( F ) ( )x P, support x P, rope 

ĵ : Fy ! Ty ! 0 . (8.8.2) ( )
P,support 

( )
P, rope 

We also assumed that the mass of the rope is negligible. In Module 7, we determined that
for forces applied to a rope with negligible mass along a line (one dimension), the force is
transmitted uniformly through the rope. When the rope is wrapped around the pulley this
is not necessarily the case because the pulley is not in static equilibrium; it is rotating. We
shall show in a later module that if we assume that the pulley is massless then the pulley 
also satisfies our second condition of static equilibrium that the torque about the center of
mass of the pulley is zero, hence the forces due to the ropes have equal magnitude, 
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Ty P, rope 
= Tx P, rope 

! T . (8.8.3) ( ) ( )

We can substitute Equation (8.8.3) into both Equations (8.8.1) and (8.8.2) to conclude
that the components of the support force between the support and the pulley are each 
equal in magnitude to the forces exerted by the ropes, 

( Fy )P,support 
= ( Fx )P, support 

= T . (8.8.4) 

The force diagram on the rope is shown in Figure 8.8.2(a). The pulley exerts a force
T
! 

P, rope on the rope, the block exerts a force T
! 

rope, object on the rope, and the sensor exerts a 

force T 
! 

rope,sensor on the rope. (In assuming that mass of the rope is negligible, we neglect 
the gravitational force acting on the rope). 

Figure 8.8.2 (a) Forces acting on rope with negligible mass 
(b) vector decomposition of forces on rope 

The vector decomposition of the forces is shown in Figure 8.8.2(b). Now apply Newton’s
Second Law in each direction: 

î : T( ) ! T = m a ! 0 (8.8.5) x rope, pulley rope, sensor rope x , rope 

( )ĵ : Ty rope, pulley 
! Trope, object = m rope ay , rope ! 0 . (8.8.6) 

Notice that in both Equations (8.8.5) and (8.8.6), the right hand side is zero because we
assumed that the mass of the rope was negligible. In general, the rope has non-zero 
acceleration. 

We can solve Equation (8.8.5) for the force that the sensor exerts on the rope 
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( )T rope,sensor = Tx rope, pulley 
, (8.8.7) 

and Equation (8.8.6) for the force that the object exerts on the rope, 

( ) (8.8.8) Trope, object = Ty rope, pulley 
. 

We can now compare the two results in Equations (8.8.7) and (8.8.8) to Equation (8.8.3)
and conclude that the tension in the rope is uniform and equal in magnitude to the forces
at each end of the rope, 

T rope, sensor = Trope, object = T . (8.8.9) 

There are two Newton’s Third Law action-reaction pairs: the interaction between the
sensor/cart and rope, 

T rope, sensor = T sensor, rope (8.8.10) 

and the interaction between the object and rope, 

Trope, object = Tobject, rope (8.8.11) 

Thus by substituting Equations (8.8.10) and (8.8.11) into Equation (8.8.9), we can 
conclude that the tension in the rope is equal to the force of the rope on the sensor/cart
and the force of the rope on the object, 

T sensor, rope = Tobject, rope = T . (8.8.12) 
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