
Module 7: The Concept of Force 

Where was the chap I saw in the picture somewhere? Ah yes, in the dead sea 
floating on his back, reading a book with a parasol open. Couldn’t sink if you 
tried: so thick with salt. Because the weight of the water, no, the weight of the 
body in the water is equal to the weight of the what? Or is it the volume equal to 
the weight? It’s a law something like that. Vance in High school cracking his 
fingerjoints, teaching. The college curriculum. Cracking curriculum. What is 
weight really when you say weight? Thirtytwo feet per second per second. Law of 
falling bodies: per second per second. They all fall to the ground. The earth. It’s 
the force of gravity of the earth is the weight. 

James Joyce, Ullysses1 

7.1 Introduction 

In our daily experience, we can cause a body to move by either pushing or pulling that 
body. Ordinary language use describes this action as the effect of a person’s strength or 
force. However, bodies placed on inclined planes, or when released at rest and undergo 
free fall, will move without any push or pull. Galileo still referred to a force acting on 
these bodies, a description of which he published in 1623 in his Mechanics. In 1687, 
Isaac Newton published his three laws of motion in the Philosophiae Naturalis Principia 
Mathematica (“Mathematical Principles of Natural Philosophy”), which extended 
Galileo’s observations. The First Law expresses the idea that when a no force acts on a 
body, it will remain at rest or maintain uniform motion; when a force is applied to a body, 
it will change its state of motion. 

Law 1: Every body continues in its state of rest, or of uniform motion in a right 
line, unless it is compelled to change that state by forces impressed upon it. 

Projectiles continue in their motions, so far as they are not retarded by the 
resistance of air, or impelled downwards by the force of gravity. A top, whose 
parts by their cohesion are continually drawn aside from rectilinear motions, 
does not cease its rotation, otherwise than as it is retarded by air. The greater 
bodies of planets and comets, meeting with less resistance in freer spaces, 
preserve their motions both progressive and circular for a much longer time. 

The idea that force produces motion was recognized before Newton by many 
scientists, especially Galileo, but Newton extended the concept of force to any 
circumstance that produces acceleration. When the body is initially at rest, the direction 
of our push or pull corresponds to the direction of motion of the body. If the body is 
moving, the direction of the applied force may change both the direction of motion of the 
body and how fast it is moving. This enables us to precisely define force in terms of 

1 James Joyce, Ulysses, The Corrected Text edited by Hans Walter Gabler with Wolfhard 
Steppe and Claus Melchior, Random House, New York. 
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acceleration. 

We shall define force first in terms of its effect on the standard body we 
introduced in Section 1.4, which by definition has a mass m s = 1 kg . We apply an action 

to the standard body that will induce the body to accelerate with a magnitude a ! that can 
be measured by an accelerometer (any device that measures acceleration). 

Definition: Force 

! 
Force is a vector quantity. The magnitude of the total force F acting on the 

object is the product of the mass m s with the magnitude of the acceleration a ! . 
The direction of the total force on the standard body is defined to be the direction 
of the acceleration of the body. Thus 

!

F
! m s 

!a (7.1.1)


The SI units for force are[kg! m! s "2 ] . This unit has been named the newton [N] 
and1N = 1 kg! m! s "2 . 

In order to justify the statement that force is a vector quantity, we need to apply two ! ! 
forces F1 and F2 simultaneously to our standard body and show that the resultant force 
! 
FT is the vector sum of the two forces when they are applied one at a time. 

Figure 7.1: Force is a vector concept 

When we apply the two forces simultaneously, we measure the acceleration a ! , and 
define 

F
!

T ! m s a ! . (7.1.2) 

We then apply each force separately and measure the accelerations a! 1 and a! 2. , noting 
that 
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!
 !
a1 s 

! 

F

F2 

1 (7.1.3)
= m 

!
a2 . (7.1.4)
= m s 

We then compare the accelerations. The results of these three measurements, and for that 
matter any similar experiment, confirms that the accelerations add as vectors 

!a =

!a !a (7.1.5)


(7.1.6)


+
 2 . 

2 . 
! 
F

1 

! 
F1 

Therefore the forces add as vectors as well, 

! 
F
T =
 +


This last statement is not a definition but a consequence of the experimental result 
described by Equation (7.1.5) and our definition of force. 

Since force is a vector concept, the total force may be the vector sum of individual forces 

! 
F

! 
F

Free Body Force Diagram 

acting on the body 

1 2 

! 
F
T + ! ! ! (7.1.7)
+
=


A free body force diagram is a representation of the sum of all the forces that act 
on the isolated body. For each body, represent each force acting on the body by an arrow 
that indicates the direction of the force. For example, the forces that regularly appear in 
free body diagram are contact forces, tension, gravitation, friction, pressure forces, spring 
forces, electric and magnetic forces which we shall introduce below. 

Suppose we choose a Cartesian coordinate system, then we can resolve the total force 
into its component vectors 

T T TF
!

T = Fx î + Fy ĵ + Fz k̂ (7.1.8) 

Each one of the component vectors is itself a vector sum of the individual 
component vectors from each contributing force. We can use the free body force diagram 
to make these vector decompositions of the individual forces. For example, the x -
component of the total force is 

Fx
T = F1,x

T + F2,x
T + ! ! ! . (7.1.9) 
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Example 1 Two horizontal ropes are attached to a post that is stuck in the ground. The 
ropes pull the post producing the vector forces F

! 
1 = 70 N î + 20 N ĵ and 

F
! 

2 = !30 N î + 40 N ĵ as shown in the figure. Find the direction and magnitude of the 
sum of the forces exerted by the ropes on the post. 

! 
F1 

! 
F2Solution: Let 

! 
F
!
 +
 denote the sum of the forces due to the ropes. Then we can 

write the sum as 

!
!
!

F ! F1 + F2 = (Fx1 + Fx2 ) î + (Fy1 + Fy 2 ) ĵ = (70 N + " 30 N) î + (20 N + 40 N) ĵ 

.(7.1.10)

= (40 N) î + (60 N) ĵ 

The magnitude is 
= 72 N . 

! 
F = (40 N)2 + (60 N)2 (7.1.11)


! 
The angle the force F makes with the positive x-axis given by 

! = tan "1 
%
# Fy 

&
( = tan "1 # )

+ 
60 N ,& 

= 63° . (7.1.12) . 
$ Fx '

%$ * 40 N -
('

as shown in the figure below. 
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7.2 Mass 

Our definition of force is based on proportionality between force and acceleration, 
!

F !

!a . (7.2.1)


In order to define the magnitude of the force, we introduced a constant of proportionality, 
the inertial mass, which Newton called a “quantity of matter” and he was the first to 
clearly understand that inertial mass was a property of a body different from “weight” 
(see section 3.5). So far, we have only used the standard body to measure force. Instead 
of performing experiments on the standard body, we can calibrate the masses of all other 
bodies in terms of the standard mass by the following experimental procedure. 

We apply a force of magnitude F to the standard body and measure the 
magnitude of the acceleration a s . Then we apply the same force to a second body of 

unknown mass m u . We measure the magnitude of the unknown acceleration a u . Since 
the same force is applied to both bodies, 

F = m u a u = m s a s , (7.2.2) 

Therefore the ratio of the unknown mass to the standard mass is equal to the inverse ratio 
of the magnitudes of the accelerations, 

m a u s . (7.2.3) = 
m a s u 

Therefore the second body has mass equal to 

a 
. (7.2.4) m ! m s 

u s a u 

12/28/2010 5




This method is justified by the fact that we can repeat the experiment using a different 
force and still find that the ratios of the acceleration are the same. 

7.3 Newton’s Second Law, Force Laws, and Predicting Motion 

Newton’s Second Law expresses the idea that when a body undergoes acceleration, a 
force is acting on it: 

Law II: The change of motion is proportional to the motive force impresses, and is 
made in the direction of the right line in which that force is impressed. 

If any force generates a motion, a double force will generate double the motion, a 
triple force triple the motion, whether that force is impressed altogether and at 
once or gradually and successively. And this motion (being always directed the 
same way with the generating force), if the body moved before, is added or 
subtracted from the former motion, according as they directly conspire with or are 
directly contrary to each other; or obliquely joined, when they are oblique, so as to 
produce a new motion compounded from the determination of both. 

Since we defined force in terms of the change in motion, the Second Law appears 
to be a restatement of this definition, and devoid of predictive power since force is only 
determined by measuring acceleration. What transforms the Second Law from a 
definition into the Equations of Motion for a physical system that can, in principle, 
predict the future positions and velocities of all bodies is the additional input that comes 
from Force Laws that are based on experimental observations on the interactions between 
bodies. 

There are forces that don't change appreciably from one instant to another, which 
we refer to as constant in time, and forces that don't change appreciably from one point to 
another, which we refer to as constant in space. The gravitation force on a body near the 
surface of the earth is an example of a force that is constant in space. 

There are forces that increase as you move away. When a mass is attached to one 
end of a spring and the spring is stretched a distance x , the spring force increases in 
strength proportional to the stretch. 

There are forces that stay constant in magnitude but always point towards the 
center of a circle; for example when a ball is attached to a rope and spun in a horizontal 
circle with constant speed, the tension force acting on the ball is directed towards the 
center of the circle. This type of attractive central force is called a centripetal force. 

There are forces that spread out in space such that their influence becomes less 
with distance. Common examples are the gravitation and electric forces. The 
gravitational force between two bodies falls off as the inverse square of the distance 
separating the bodies provided the bodies are of a small dimension compared to the 
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distance between them. More complicated arrangements of attracting and repelling things 
give rise to forces that fall off with other powers of r : constant, 1 / r , 1 / r 2 , 1 / r3 , etc., 

How do we determine if there is any mathematical relationship, a force law that describes 
the relationship between the force and some measurable property of the bodies involved? 

Hooke’s Law 

We shall illustrate this procedure by considering the force that compressed or stretched 
springs exert on bodies. In order to stretch or compress a spring from its equilibrium 
length, a force must be exerted on the spring. Attach a body of mass m to one end of a 
spring and fix the other end of the spring to a wall (Figure 7.2). Assume that the contact 
surface is smooth and hence frictionless in order to consider only the effect of the spring 
force. 

Figure 7.2: A sketch of a spring attached to a wall and an object. 

Initially stretch the spring a distance !l > 0 (or compress the spring by !l < 0 ), 
release the body, measure the acceleration, and then calculate the magnitude of the force 
of the spring acting on the body using the definition of force F 

! 
= m a ! . Now repeat the 

experiment for a range of stretches (or compressions). Experiments will shown that for 
some range of lengths, !l0 < !l < !l1 , the magnitude of the measured force is 
proportional to the stretched length and is given by the formula 

! 
F ! "l . (7.3.1) 

In addition, the direction of the acceleration is always towards the equilibrium 
position when the spring is neither stretched nor compressed. This type of force is called 
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a restoring force. From the experimental data, the constant of proportionality, the spring 
constant k , can be determined. 

Figure 7.3: Plot of force vs. compression and extension of spring 

The spring constant has units N ! m "1 . The spring constant for each spring is determined 
experimentally by measuring the slope of the graph of the force vs. compression and 
extension stretch (Figure 7.3). Therefore for this one spring, the magnitude of the force is 
given by 

! 
F = k !l . (7.3.2) 

Now perform similar experiments on other springs. For a range of stretched lengths, each 
spring exhibits the same proportionality between force and stretched length, although the 
spring constant may differ for each spring. 

Since it would be extremely impractical to experimentally determine whether this 
proportionality holds for all springs, and since a modest sampling of springs has 
confirmed the relation, we shall infer that all springs will produce a restoring force which 
is linearly proportional to the stretched (or compressed) length. This experimental 
relation regarding force and stretched (or compressed) lengths for a finite set of springs 
has now been inductively generalized into the above mathematical model for springs, a 
model we refer to as a force law. 

This Newtonian induction is the critical step that makes physics a predictive science. 
Suppose a spring, attached to an object of mass m , is stretched by an amount !l . A 
prediction can be made, using the force law, that the magnitude of the force between the ! 
rubber band and the object is F = k !l without having to experimentally measure the 
acceleration. 

Now we can use Newton’s second Law to predict the magnitude of acceleration 
of the body; 
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! 
! F k !l 
a = = . (7.3.3) 

m m 

Now perform the experiment, and measure the acceleration within some error 
bounds. If the magnitude of the predicted acceleration disagrees with the measured result, 
then the model for the force law needs modification. The ability to adjust, correct or even 
reject models based on new experimental results enables a description of forces between 
objects to cover larger and larger experimental domains. 

Gravitational Force near the Surface of the Earth 

Near the surface of the earth, the gravitational interaction between a body and the earth is 
mutually attractive and has a magnitude of 

! 
F grav = m grav g (7.3.4) 

where m grav is the gravitational mass of the body and g is a positive constant. 

The International Committee on Weights and Measures has adopted as a standard 
value for the acceleration of a body freely falling in a vacuum g = 9.80665 m ! s "2 . The 
actual value of g varies as a function of elevation and latitude. If ! is the latitude and 
h the elevation in meters then the acceleration of gravity in SI units is 

g = (9.80616! 0.025928cos(2") + 0.000069cos2(2") ! 3.086 # 10!4 h) m $ s!2 .(7.3.5) 

This is known as Helmert’s equation. The strength of the gravitational force on the 
standard kilogram at 42! latitude is 9.80345 N ! kg"1 , and the acceleration due to gravity 
at sea level is therefore g = 9.80345 m ! s "2 for all objects. At the equator, 
g = 9.78 m ! s "2 (to three significant figures), and at the poles g = 9.83 m ! s "2 . This 
difference is primarily due to the earth’s rotation, which introduces an apparent repulsive 
force that affects the determination of g as given in Equation (7.3.4) and also flattens the 
spherical shape earth (the distance from the center of the earth is larger at the equator 
than it is at the poles by about 26.5 km ). Both the magnitude and the direction of the 
gravitational force also show variations that depend on local features to an extent that's 
useful in prospecting for oil and navigating submerged nuclear submarines. Such 
variations in g can be measured with a sensitive spring balance. Local variations have 
been much studied over the past two decades in attempts to discover a proposed “fifth 
force” which would fall off faster than the gravitational force that falls off as the inverse 
square of the distance between the masses. 
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The Principle of Equivalence (see section 6.4) states that the gravitational mass is 
identical to the inertial mass that is determined with respect to the standard kilogram. 

mgravitational = minertial . (7.3.6) 

From this point on, inertial and gravitational mass will be denoted by the symbol m . 

Newton’s Third Law: Action-Reaction Pairs 

Newton realized that when two bodies interact via a force, then the force on one body is 
equal in magnitude and opposite in direction to the force acting on the other body. 

Law III: To every action there is always opposed an equal reaction: or, the 
mutual action of two bodies upon each other are always equal, and directed to 
contrary parts. 

Whatever draws or presses another is as much drawn or pressed by that other. If 
you press a stone with your finger, the finger is also pressed by the stone. 

The Third Law is the most surprising of the three laws. Newton’s great discovery 
was that when two objects interact, they each impart the same magnitude of force on each 
other. Any pair of forces that satisfy the third law are referred to as an action-reaction 
pair of forces. A pair of action-reaction forces can never act on the same body. 

Consider two bodies engaged in a mutual interaction. Label the bodies 1 and 2 ! ! 
respectively. Let F1,2 be the force on body 1 due to the interaction with body 2. Let F2,1 

be the force on body 2 due to the interaction with body 1. These forces are depicted in 
Figure 7.4. 

Figure 7.4: Action-reaction pair of forces 

These two vector forces are equal in magnitude and opposite in direction, 
! ! 
F1,2 = !F2,1 . (7.3.7) 

Models in Physics: Fundamental Laws of Nature 

Force laws are mathematical models of physical processes. They arise from observation 
and experimentation, and they have limited ranges of applicability. Does the linear force 
law for the spring hold for all springs? Each spring will most likely have a different range 
of linear behavior. So the model for stretching springs still lacks a universal character. As 
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by 

!r

of physics. 

that underline Hooke’s Law. 

Universal Law of Gravitation 

!r

The force on body 1 due to the gravitational interaction between the two bodies is given 

such, there should be some hesitation to generalize this observation to all springs unless 
some property of the spring, universal to all springs, is responsible for the force law. 

Perhaps springs are made up of very small components, which when pulled apart 
tend to contract back together. This would suggest that there is some type of force that 
contracts spring molecules when they are pulled apart. What holds molecules together? 
Can we find some fundamental property of the interaction between atoms that will suffice 

fundamental forces to explain the macroscopic force law? This search for is a central task 

In the case of springs, this could lead into an investigation of the composition and 
structural properties of the that the steel in the spring. We would atoms compose 
investigate the geometric properties of the lattice of atoms and determine whether there is 
some fundamental property of the atoms that create this lattice. Then we ask how stable is 
this lattice under deformations. This may lead to investigation into the electron an 
configurations associated with each atoms and how they overlap to form bonds between 
atoms. These particles carry charges, which obey Coulomb’s Law, but also the Laws of 
Quantum Mechanics. So in order to arrive at a satisfactory explanation of the elastic 
restoring properties of the spring, we need models that describe the fundamental physics 

At points significantly away from the surface of the earth, the gravitation force is 
Newton’s Universal Law of no longer constant with respect to the distance to the surface. 

Gravitation describes the gravitation force between two bodies with masses, and m m .1 2 

This force points along the line connecting the bodies, is attractive, and its magnitude is 
proportional to the inverse square of the distance, , between the bodies (Figure 7.6a). r1,2 

! m m1 2 ˆF G (7.3.8) ! r= ,1, 2 1, 2 2 

!r

r1, 2 

where r̂1,2 = r! 1,2 / r! 1,2 is a unit vector directed from body 2 to body 1 (i.e. in Figure 7.6b, 

1,2 1 2 , and r1,2 = r! 1,2 ). The constant of proportionality in SI units is !
=


G = 6.67 ! 10"11N # m2 # kg"2 . 
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Figure 7.6a Gravitational Force between two bodies.  Figure 7.6b Coordinate system for 
the two-body problem. 

Electric Charge and Coulomb’s Law 

Matter has properties other than mass. As we have shown in the previous section, matter 
can also carry one of two types of observed electric charge, positive and negative. Like 
charges repel, and opposite charges attract each other. The unit of charge in the SI system 
of units is called the coulomb [C] . 

The smallest unit of “free” charge known in nature is the charge of an electron or 
proton, which has a magnitude of 

e = 1.602 ! 10"19 C . (7.3.9) 

It has been shown experimentally that charge carried by ordinary objects is quantized in 
integral multiples of the magnitude of this free charge . The electron carries one unit of 
negative charge ( qelectron = !e ) and the proton carries one unit of positive charge 

( qproton = +e ). 

In an isolated system, the total charge stays constant; in a closed system, an 
amount of unbalanced charge can neither be created nor destroyed. Charge can only be 
transferred from one body to another. 

Consider two bodies with charges q1 and q2 , separated by a distance r1, 2 in 
vacuum. By experimental observation, the two bodies repel each other if they are both 
positively or negatively charged. They attract each other if they are oppositely charged. 
The force exerted on q1 due to the interaction between q1 and q2 is given by Coulomb's 
Law, 

! 
F1, 2 = ke 

q1 q
2
2 r̂1, 2 (7.3.10) 

r1, 2 
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where in SI units, ke = 8.9875 ! 109 N " m2 " C#2 and r̂1,2 = r! 1,2 / r! 1,2 is a unit vector 

directed from q2 to q1 (i.e., =
 !
 , and r1,2 =

!
r1,2 ), as illustrated in the Figure 

7.7. This law was derived empirically by Charles Augustin de Coulomb in the late 18th 

century by the same methods as described in previous sections. 

!r!r !r1,2 1 2 

Figure 7.7 Coulomb interaction between two charges 

Example 2: Coulomb’s Law and the Universal Law of Gravitation 

Show that Both Coulomb’s Law and the Universal Law of Gravitation satisfy Newton’s 
Third Law. 

Solution: To see this, interchange 1 and 2 in the Universal Law of Gravitation to find the 
force on body 2 due to the interaction between the bodies. The only quantity to change 
sign is the unit vector 

r̂2,1 = !r̂1, 2 . (7.3.11) 

Then 

F
! 

2,1 = !G
m2 m

2
1 r̂2,1 = G

m1 m
2

2 r̂1, 2 = !F
! 

1, 2 . (7.3.12) 
r2,1 r1, 2 

Coulomb’s Law also satisfies Newton’s Third Law since the only quantity to change sign 
is the unit vector, just as in the case of the Universal Law of Gravitation. 

Modeling 

One of the most central and yet most difficult tasks in analyzing a physical interaction is 
developing a physical model. A physical model for the interaction consists of a 
description of the forces acting on all the bodies. The difficulty arises in deciding which 
forces to include. For example in describing almost all planetary motions, the Universal 
Law of Gravitation was the only force law that was needed. There were anomalies, for 
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complicated effects. 

! 
F

This procedure for experimentally measuring force in terms of acceleration is rather 

1 2 

example the small shift in Mercury’s orbit. These anomalies are interesting because they 
may lead to new physics. Einstein corrected Newton’s Law of Gravitation by introducing 
General Relativity and one of the first successful predictions of the new theory was the 
perihelion precession of Mercury’s orbit. On the other hand, the anomalies may simply 
be due the complications introduced by forces that well understood butto are 
complicated to model. When bodies are in motion there is always some type of friction 
present. Air friction is often neglected because the mathematical models for air resistance 
are fairly complicated even though the force of air resistance substantially changes the 
motion. Static or kinetic friction between surfaces is sometimes ignored but not always. 
The mathematical description of the friction between surfaces has a simple expression so 
it can be included without making the description mathematically intractable. A good 

thinking about the problem is make simple model, excluding to start to way a 
complications that are small order effects. Then we can check the predictions of the 
model. Once we are satisfied that we are on the right track, we can include more 

7.4 Statics and Force Measurements 

cumbersome and problematic in the sense that we cannot really isolate a body and only 
apply one force at a time. In the case of our spring, the friction between the body and the 
table will complicate our results. We can substitute an alternate approach to measuring 
forces by noting that forces can be compounded in such a manner as to leave the body in 
its state of rest (or in uniform motion). Thus the total force acting on the body is zero, 

! 
F

! 
F


!
0
T (7.4.1)
+ ! ! ! =
+
=
 .


The force equation for static equilibrium is then three separate equations, one for each 
direction in space, and with our choice of a Cartesian coordinate system, are given by 

Fx
T = 0 , (7.4.2) 

Fy
T = 0 , (7.4.3) 

Fz
T = 0 . (7.4.4) 

The science of statics investigates how the forces can act is such a way, and is not 
concerned with the motions produced by the individual forces. With this in mind, we can 
measure forces using a statics procedure. 

We begin by using a spring scale, consisting of a spring and a hook from which we 
can suspend bodies (Figure 7.5). We shall choose a spring that satisfies Hooke’s Law for 
spring forces between 0.2 N and 10 N . If we need to measure forces in other ranges we 
can replace the spring. 
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Figure 7.5: Spring Scale 

In order to calibrate the scale, we need to apply a standard force that we already 
know the magnitude. We shall suspend a body of mass m = 0.102 kg . The gravitation 

! 
force acting on the body is constant and equal to F grav = mg = 1.000 N . The body will 

pull the spring down, and the spring will stretch. Since the body is in static equilibrium, 
the spring stretches and exerts a force pulling the body up that is equal in magnitude to 
the gravitation force pulling the body down, 

! ! 
Fspring = F grav . (7.4.5) 

Note that this is not a Third Law Action-Reaction pair. A reference point is 
attached to the spring, and we mark off 1 N on the scale at the position of this reference 
point. A second body of twice the mass is now suspended from the spring and we label 
the position of the reference point by 2 N . Since the spring force is linearly proportional 
to the stretched length we can now mark off intervals equal to the distance between 1 N 
and 2 N on the scale. We can now attach an unknown body to the spring and measure 
the spring force. Again using Newton’s Third Law, we can then deduce the force that the 
spring exerts on the body. Notice that we are not measuring the gravitation force acting 
on the body; we are instead measuring the force with which the body pulls the spring, 
which is by Newton’ s Third Law is equal in magnitude to the force with which the 
spring pulls the on the body. Because the body is static, this force must be equal in 
magnitude to the gravitational force acting on the body. 

Example 3 

In Figure 7.5, the unknown body exerts a force of 4 N on the spring scale and since the 
body is in static equilibrium this is equal in magnitude to the gravitation force, 

12/28/2010 15




! 
F grav = m g = 4.000 N . Using g = 9.803m ! s "2 , we therefore conclude that the body has 

mass 

! 
F 

m = 
grav 4.000 N 

= 0.4080 kg . (7.4.6) = 
g 9.803 m ! s "2 

Concept Question 7.1: 

If you allowed the spring scale and mass to undergo free fall, would the spring stretch? 
Hint: is the body still in static equilibrium? 

Solution: If the body and spring scale undergo free fall, the body is no longer in static 
equilibrium since it is accelerating. The only force acting on the falling body is the 
gravitation force. The spring will not stretch and hence does not exert a force on the free 
falling body. 

Example 4 In Example 1 we found that the sum of the forces due to the ropes on the post 
= (40 N) î + (60 N) ĵ . Find the direction and 

! 
F2 

!
!

was given by Eq. (7.1.10), F ! F1 + 

magnitude of the force of the ground on the post that will make the vector sum of forces 
on the post equal to zero. Assume that the post is in static equilibrium. 

! 
Solution: Denote the force of the ground on the post by F3 . Therefore the horizontal 
component of the third force of the post must be equal to 

! ! ! ! 
! î + ( 60 N) ˆFhor = !C = !(A + B) = ( 40 N) ! j . 

Because the post is in static equilibrium 
! 
F1 +

! 
F2 +

! 
F3 =

!
0
, the force of the ground on the 

post is given by 

!!! 
F3 = !(F1 + F2 ) = (!40 N) î + (!60 N) ĵ . (7.4.7)


! 
F3 = (-40 N)2 + (-60 N)2 

The magnitude is 

= 72 N . (7.4.8) 

! 
The angle the force F3 makes with the negative x-axis given by 

# Fy
T 
3 
& # "60 N & 

! = tan "1 
%
$ Fx

T 
3 

(
'
= tan "1 

%$ "40 N '( 
= 63° . (7.4.9) 
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as shown in the figure below. 

7.5 Contact Forces 

Pushing, lifting and pulling are contact forces that we experience in the everyday world. 
Rest your hand on a table; the atoms that form the molecules that make up the table and 
your hand are in contact with each other. If you press harder, the atoms are also pressed 
closer together. The electrons in the atoms begin to repel each other and your hand is 
pushed in the opposite direction by the table. 

According to Newton’s Third Law, the force of your hand on the table is equal in 
magnitude and opposite in direction to the force of the table on your hand. Clearly, if you 
push harder the force increases. Try it! If you push your hand straight down on the table, 
the table pushes back in a direction perpendicular (normal) to the surface. Slide your 
hand gently forward along the surface of the table. You barely feel the table pushing 
upward, but you do feel the friction acting as a resistive force to the motion of your hand. 
This force acts tangential to the surface and opposite to the motion of your hand. Push 
downward and forward. Try to estimate the magnitude of the force acting on your hand. 

! ! 
The total force of the table acting on your hand, Fcontact ! C , is called the contact 

! 
force. This force has both a normal component to the surface, N , called the normal force, ! 
and a tangential component to the surface, f , called the friction force (Figure 7.8). 

Figure 7.8: Normal and tangential components of the contact force 

By the law of vector decomposition for forces, 
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! 
C
!

! 
N
+

!
f .
 (7.5.1)


Any force can be decomposed into component vectors so the normal component, ! ! 
N , and the tangential component, f , are not independent forces but the vector 
components of the contact force perpendicular and parallel to the surface of contact. 

In Figure 7.9, the total forces acting on your hand are shown. These forces include ! ! 
the contact force, C , of the table acting on your hand, the force of your forearm, Fforearm , 
acting on your hand (which is drawn at an angle indicating that you are pushing down on ! 
your hand as well as forward), and the gravitational interaction, Fgravity , between the earth 
and your hand. 

Figure 7.9: Total force on hand moving towards the left 

Is there a force law that mathematically describes this contact force? Since there 
are so many individual electrons interacting between the two surfaces, it is unlikely that 
we can add up all the individual forces. So we must content ourselves with a macroscopic 
model for the force law describing the contact force. One point to keep in mind is that the 
magnitudes of the two components of the contact force depend on how hard you push or 
pull your hand. 

Example 5 Two teams, A and B, are competing in a tug-of-war. Team A is stronger, but 
neither team is moving because of friction. Draw free-body diagrams for Team A, for 
Team B, and for the rope. For each force on your free body diagrams, describe the action-
reaction force associated with it. 

Solution: 

The forces acting on Team A are: 
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!

1. The force FA, r between Team A and the rope. 

2. The gravitation force (F 
! 

grav )A, E ! mA g 
! between Team A and the earth. 

! 
3. The contact force CA, G between Team A and the ground. 

The forces acting on Team B are: 

! 
1. The force FB, r between Team B and the rope. 

2. The gravitation force (F 
! 

grav )B, E ! mB g 
! between Team B and the earth. 

! 
3. The contact force C , between Team B and the ground. B G 

The forces on the rope are 

! 
1. The force Fr, A between the rope and Team A. 

! 
2. The force Fr, B between the rope and Team B. 

We neglect the gravitation force on the rope. 

Since the rope is not moving, these forces sum to zero by Newton’s Second Law but they 
are not Third Law pairs; 
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! ! ! 
Fr, A + Fr, B = 0 . 

The Newton’s Third Law pairs are 

! ! 
1.	 The forces between Team A and the rope with FA, r = !Fr, A . 

! ! 
2.	 The forces between Team B and the rope with FB, r = !Fr, B . 

! ! 
3. The contact forces between Team A and the ground, CA, G = !CG, A . The contact 

force of Team A on the ground is not shown on the above force diagrams. 

! ! 
4. The contact forces between Team B and the ground, CB, G = !CG, B . The contact 

force of Team B on the ground is not shown on the above force diagrams. 

5.	 The gravitation forces between the earth and Team A, 
(F 
! 

grav )A, E ! mA g 
! 
= "(F 
! 

grav )E, A . The gravitation force on the earth is not shown in 
the figures above. 

6.	 The gravitation forces between the earth and Team B, 
(F 
! 

grav )B, E ! mB g 
! 
= "(F 
! 

grav )E, B . The gravitation force on the earth is not shown in 
the figures above. 

The Normal Component of the Contact Force and Weight 

Hold an object in your hand. You can feel the “weight” of the object against your palm.  
But what exactly do we mean by “weight”? Consider the force diagram on the object in 
Figure 7.10. Let’s choose the +-direction to point upward. 

Figure 7.10: Object resting in hand 

!g
! 
F

! 
F

There are two forces acting on the object. One force is the gravitation force between the 
g ! , also known as object, earth gravity earth and the object, and is denoted by ! m where =


the gravitational acceleration, is a vector that points downward and has magnitude 
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g = 9.8 m ! s "2 . The other force on the object is the contact force between your hand and 
the object. Since we are not pushing the block horizontally, this contact force on your ! 
hand points perpendicular to the surface, and hence has only a normal component, N . 
Let N denote the magnitude of the normal force. The force diagram on the object is 
shown in Figure 7.11. 

! 
F

Figure 7.11: Force diagram on object 

Since the object is at rest in your hand, the vertical acceleration is zero. Therefore 
Newton’s Second Law states that 

gravity 

! 
N

!
0
 (7.5.2)
+
 =
 .


Since we chose the positive direction to be upwards, 

N ! m g = 0 , (7.5.3) 

which can be solved for the magnitude of the normal force 

N = m g . (7.5.4) 

This result may give rise to a misconception that the normal force is always equal 
to the mass of the object times the magnitude of the gravitational acceleration at the 
surface of the earth. The normal force and the gravitation force are two completely 
different forces. In this particular example, the normal force is equal in magnitude to the 
gravitational force and but opposite in direction, which sounds like an example of the 
Third Law. But is it? No! 
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! 
First, note that the normal force N in the above example is between your hand ! 

and the object, Nobject, hand . The gravitation force mg ! is the force between the earth and 
! 

the object, Fobject,earth . 

In order to see all the action reaction pairs we must consider all the bodies 
involved in the interaction. The extra body is your hand. The force diagram on your hand 
is shown in Figure 7.12. 

Nhand,object 

Fhand,forearm 

Fhand,earth 

Figure 7.12: Force diagram on hand 

The forces shown include the gravitational force between your hand and the earth, ! ! 
Fhand,earth that points down, the normal force between the object and your hand, Nhand, object , ! 
which also points down, and there is a force Fhand, forearm applied by your forearm to your 
hand that holds your hand up. 

There are also forces on the earth due to the gravitational interaction between the 
hand and object and earth. We show these forces in Figure 7.13: the gravitation force ! 
between the earth and your hand Fearth, hand , and the gravitational force between the earth 

! 
and the object, Fearth, object . 
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Figure 7.13: Gravitational forces on earth due to object and hand 

There are three Third Law pairs. The first is associated with the normal force, 
! 
Nhand, object = ! 

! 
Nobject, hand (7.5.5) 

The second is the gravitational force between the mass and the earth, 
! 
Fobject,earth = ! 

! 
Fearth, object . (7.5.6) 

The third is the gravitational force between your hand and the earth, 
! 
Fhand, earth = ! 

! 
Fearth, hand . (7.5.7) 

As we see, none of these three law pairs associates the “weight” of the block on the hand 
with the force of gravity between the block and the earth. 

When we talk about the “weight” of an object, we often are referring to the effect that 
object has on a scale or on the feeling we have when we hold that object. These effects 
are actually effects of the normal force. We say that an object “feels lighter” if there is an 
additional force holding the object up. For example, you can rest an object in your hand, 
but use your other hand to apply a force upwards on the object to make it feel lighter in 
your supporting hand. 

This leads us to the use of the word “weight,” which is often used in place of the 
gravitation force that the earth, exerts on an object, and we will always refer to this as the 
gravitation force instead of “weight.” When you jump in the air, you feel “weightless” 
because there is no normal force acting on you, even though the earth is still exerting a 
gravitation force on you; clearly, when you jump, you do not turn this force off! When 
astronauts are in orbit around the earth, televised images show the astronauts floating in 
the spacecraft cabin; the condition is described, rightly, as being “weightless.” The 
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gravitation force, while still present, has diminished slightly since their distance from the 
center of the earth has increased. (It’s about 3% weaker in a low orbit than on the surface 
of the earth.) 

Static and Kinetic Friction 

There are two distinguishing types of friction when surfaces are in contact with each 
other. The first type is when the two objects in contact are moving relative to each other; ! 
the friction is called kinetic friction or sliding friction, fkinetic . 

! 
Based on experimental measurements, the force of kinetic friction, fkinetic , between 

two surfaces, is independent of the relative speed of the surfaces, the area of contact, and 
only depends on the magnitude of the normal component of the contact force. The force 
law for kinetic friction between the two surfaces can be modeled by 

fkinetic = µk N , (7.5.8) 

where µk is called the coefficient of kinetic friction. The direction of kinetic friction on 
surface A due to the contact with a second surface B is always opposed to the relative 
direction of motion the surface A with respect to the surface B . 

The second type is when the two surfaces are static relative to each other; the ! 
friction is called static friction, fstatic . Push your hand forward along a surface; as you 
increase your pushing force, the friction force feels stronger and stronger. Try this! Your 
hand will at first stick until you push hard enough, then your hand slides forward. The 
magnitude of the static friction force, fstatic , depends on how hard you push. 

If you rest your hand on a table without pushing horizontally, the static friction is 
zero. As you increase your push, the static friction increases until you push hard enough 
that your hand slips and starts to slide along the surface. Thus the magnitude of static 
friction can vary from zero to some maximum value when the pushed object begins to 
slip, 

0 ! fstatic ! ( fstatic )max . (7.5.9) 

Is there a mathematical model for the magnitude of the maximum value of static 
friction between two surfaces? Through experimentation, we find that this magnitude is, 
like kinetic friction, proportional to the magnitude of the normal force 

( fstatic )max = µs N . (7.5.10) 
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Here the constant of proportionality is µs , the coefficient of static friction. This 

constant is slightly greater than the constant µk associated with kinetic friction, µs > µk . 
This small difference accounts for the slipping and catching of chalk on a blackboard, 
fingernails on glass, or a violin bow on a string. 

The direction of static friction on an object is always opposed to the direction of 
the applied force (as long as the two surfaces are not accelerating). In Figure 7.14a, the 
static friction is shown opposing a pushing force acting on an object. In Figure 7.14b, 
when a pulling force is acting on an object, static friction is now pointing the opposite 
direction from the pulling force. 

Figure 7.14a and Figure 7.14b: Pushing and pulling forces and the direction of static 
friction. 

Although the force law for the maximum magnitude of static friction resembles 
the force law for sliding friction, there are important differences: 

1. The direction and magnitude of static friction on an object always depends on 
the direction and magnitude of the total applied forces acting on the object, where 
the magnitude of kinetic friction for a sliding object is fixed. 

2. The magnitude of static friction has a maximum possible value. If the 
magnitude of the total applied force along the direction of the contact surface 
exceeds the magnitude of the maximum value of static friction, then the object 
will start to slip (and be subject to kinetic friction.) We call this the just slipping 
condition. 

7.6 Tension in a Rope 

How do we define “tension” in a rope? A rope consists of long chains of atoms 
characteristic of the particular material found in the rope. When a rope is pulled, we say it 
is under tension. The long chains of molecules are stretched, and inter-atomic electrical 
forces between atoms in the molecules prevent the molecules from breaking apart. A 
detailed microscopic description of the behavior of the atoms is possible, but would be 
difficult and unnecessary for our purpose. Instead, we proceed to develop a macroscopic 
model for the behavior of ropes under tension. 
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We begin by considering a rope of mass m r that is attached to a block of mass mb !

on one end, and pulled by an applied force, Fapplied , from the other end (Figure 7.15). For 

simplicity let’s assume that the mass of the rope is so small, m r ! 0 , that we can take the 
rope is to be horizontal. 

Figure 7.15: Forces acting on block and rope 

Let’s choose an x-y coordinate system with the + ĵ unit vector pointing upward in the 
normal direction to the surface, and the + î unit vector pointing in the direction of the 
motion of the object. There are three forces acting on the rope; the applied pulling force, 
F
! 

applied , the gravitational force m r g ! " 0 , and the force of the object acting on the rope, 
! 
Frope, block . There are four forces acting on the object, the force on the object due to the 

! ! ! 
rope Fblock,rope , the static friction force f s , the normal force N , and the gravitational 

force mb g ! , forces acting on the object and the rope are shown in Figure 7.16. 

Figure 7.16: Force diagrams on block and rope 

The total forces on the rope and the block must each sum to zero. The static equilibrium 
condition for the rope is: 

Fapplied ! Frope,block = 0 (7.6.1) 

The static equilibrium conditions for the block are: 

in the + î -direction: 
Fblock,rope ! fstatic = 0 , (7.6.2) 
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in the + ĵ -direction: 
N ! mbg = 0 . (7.6.3) 

We now apply Newton’s Third Law, the action-reaction law, 
! ! 
Frope, block = !Fblock, rope , (7.6.4) 

which becomes, in terms of our magnitudes, 

Frope, block = Fblock, rope . (7.6.5) 

Our static equilibrium conditions now become 

Fapplied = Frope, block = Fblock,rope = fstatic . (7.6.6) 

Thus the applied pulling force is transmitted through the rope to the object since it has the 
same magnitude as the force of the rope on the object. 

Fapplied = Fblock,rope . (7.6.7) 

In addition we see that the applied force is equal to the static friction, 

Fapplied = fstatic . (7.6.8) 

Static Tension in a Rope 

We have seen that in static equilibrium the pulling force transmits through the rope.  
Suppose we make an imaginary slice of the rope at a distance x from the end that the 
object is attached to the object (Figure 7.17). The rope is now divided into two sections, 
labeled left and right. 

Figure 7.17: Imaginary slice through the rope 

Aside from the Third Law pair of forces between the object and the rope, there is 
now a Third Law pair of forces between the left section of the rope and the right section ! 
of the rope. We denote this force acting on the left section by Fleft, right (x) . The force on 

! 
the right section due to the left section is denoted by Fright,left (x) . Newton’s Third Law 

12/28/2010 27




requires that each force in this action-reaction pair is equal in magnitude and opposite in 
direction. 

! ! 
Fleft, right (x) = !Fright, left (x) (7.6.9) 

The force diagram for the left and right sections are shown in Figure 7.18. 

Figure 7.18: Force diagram for the left and right sections of rope 

Definition: Tension in a Rope 

The tension T (x) in a rope at a distance x from one end of the rope is the 
magnitude of the action -reaction pair of forces acting at the point x , 

! ! 
T (x) = Fleft, right (x) = Fright, left (x) . (7.6.10) 

Special case: For a rope of negligible mass in static equilibrium, the tension is uniform 
and is equal to the applied force, 

T = Fapplied . (7.6.11) 

Example 6: Tension in a massive rope 

Suppose a uniform rope of mass mr and length l is attached to an object of mass m1 

lying on a table. The rope is pulled from the side opposite the block with an applied force! 
F . The coefficient of kinetic friction between the block and the surface is µk . Find the 
tension in the rope as a function of distance from the block. 

Solution: The key point to realize is that the rope is now massive. Suppose we make an 
imaginary slice of the rope at a distance x from the end that the object  as we did in 
Figure 7.17. The mass of the right slice is given by 

m 
mright l

r (l ! x) . (7.6.12) = 
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The mass of the left slice is 

m 
mleft l

r x . (7.6.13) = 

We now apply Newton’s Second Law to the right slice of the rope 

m
Fapplied ! T (x) = r (l ! x)axr . (7.6.14) 

l 

where T (x) is the tension in the rope at a distance x from the object. We also apply 
Newton’s Second Law to the left slice of the rope 

m
T (x) ! Frope,block = 

l
r xaxl . (7.6.15) 

where T (x) is the tension in the rope at a distance x from the object. 


The forces acting on the block are shown in Figure 7.16. Newton’s second Law is now


in the + î -direction: 
Fblock,rope ! fk = mbaxb , (7.6.16) 

in the + ĵ -direction: 
N ! mbg = 0 . (7.6.17) 

Eq. (7.6.17) implies that N = mbg and so the kinetic friction fore acting on the block is 

fk = µk N = µk mbg . (7.6.18) 

We now substitute Eq. (7.6.5) and Eq. (7.6.18) into Eq. (7.6.16) which becomes 

Frope, block = µk mbg + mbaxb , (7.6.19) 

We substitute Eq. (7.6.19) into Eq. (7.6.15) yielding 

m
T (x) ! (µk mbg + mbaxb ) = r xaxl . (7.6.20) 

l 

Because the rope and block move together, the accelerations are equal which we denote 
by the symbol a 
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a ! axb = axl . (7.6.21) 

Then Eq. (7.6.20) becomes 

m
T (x) = µk mbg + (mb + r x)a . (7.6.22) 

l 

Check our result:


We could have used Eq. (7.6.14) to find the tension


m
T (x) = Fapplied ! r (l ! x)a . (7.6.23) 

l 

Recall from the free body diagram in Figure 7.15 that the applied force satisfies 

Fapplied ! fs = (mr + mb )a . (7.6.24) 

Therefore substitute Eq. (7.6.24) into Eq. (7.6.23) yielding 

m m
T (x) = fs + (mr + mb )a ! r r(l ! x)a = fs + (mb + x)a . (7.6.25) 

l l 

in agreement with Eq. (7.6.22). We expect this result because the tension is accelerating 
both the left slice and the block and is opposed by the friction force. 
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