
Module 2: Problem Solving Strategies and Estimation 

2.1 Problem Solving 

Solving problems is the most common task used to measure understanding in technical 
and scientific courses, and in many aspects of life as well. In general, problem solving 
requires factual and procedural knowledge in the area of the problem, plus knowledge of 
numerous schema, plus skill in overall problem solving. Schema is loosely defined as a 
“specific type of problem” such as principal, rate, and interest problems, one-dimensional 
kinematic problems with constant acceleration, etc. In most introductory university 
courses, improving problem solving relies on three things: 

1.	 increasing domain knowledge, particularly definitions and procedures 
2.	 learning schema for various types of problems and how to recognize that a 

particular problem belongs to a known schema 
3.	 becoming more conscious of and insightful about the process of problem solving. 

To improve your problem solving ability in a course, the most essential change of 
attitude is to focus more on the process of solution rather than on obtaining the answer.  
For homework problems there is frequently a simple way to obtain the answer, often 
involving some specific insight. This will quickly get you the answer, but you will not 
build schema that will help solve related problems further down the road. Moreover, if 
you rely on insight, when you get stuck on a problem, you’re stuck with no plan or 
fallback position. At MIT you will see very few exam problems that are exactly the same 
as problems you have seen before, but most will use the same schema. 

General Approach to Problem Solving 

A great many physics textbook authors (e.g. Young and Freedman, Knight, Halliday, 
Resnick and Cartwright…) recommend overall problem solving strategies. These are 
typically four-step procedures that descend from George Polya’s influential book, How to 
Solve It, on problem solving1. Here are his four steps: 

I. Understand – get a conceptual grasp of the problem 

What is the problem asking? What are the given conditions and assumptions? 
What domain of knowledge is involved? What is to be found and how is this 
determined or constrained by the given conditions? 

What knowledge is relevant? E.g. in physics, does this problem involve 
kinematics, forces, energy, momentum, angular momentum, equilibrium? If 
the problem involves two different areas of knowledge, try to separate the 
problem into parts. Is there motion or is it static? If the problem involves 
vector quantities such as velocity or momentum, think of these geometrically 

1 G. Polya, How to Solve It, 2nd ed., Princeton University Press, 1957. 
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(as arrows that add vectorially). Get conceptual understanding: is some 
physical quantity (energy, momentum, angular momentum, etc.) conserved? 
Have you done problems that involve the same concepts in roughly the same 
way? 

Model: Real life contains great complexity, so in physics (chemistry, 
economics…) you actually solve a model problem that contains the essential 
elements of the real problem. The bike and rider become a point mass (unless 
angular momentum is involved), the ladder’s mass is regarded as being 
uniformly distributed along its length, the car is assumed to have constant 
acceleration or constant power (obviously not true when it shifts gears), etc.  
Become sensitive to information that is implicitly assumed (Presence of 
gravity? No friction? That the collision is of short duration relative to the 
timescale of the subsequent motion? …). 

Advice: Write your own representation of the problem’s stated data; redraw 
the picture with your labeling and comments. Get the problem into your 
brain! Go systematically down the list of topics in the course or for that week 
if you are stuck. 

II.	 Devise a Plan - set up a procedure to obtain the desired 
solution 

General - Have you seen a problem like this – i.e., does the problem fit in a 
schema you already know? Is a part of this problem a known schema? Could 
you simplify this problem so that it is? Can you find any useful results for 
the given problem and data even if it is not the solution (e.g. in the special 
case of motion on an incline when the plane is at q= 0 )? Can you imagine a 
route to the solution if only you knew some apparently not given information? 
If your solution plan involves equations, count the unknowns and check that 
you have that many independent equations.  

In Physics, exploit the freedoms you have: use a particular type of coordinate 
system (e.g. polar) to simplify the problem, pick the orientation of a 
coordinate system to get the unknowns in one equation only (e.g. only the x -
direction), pick the position of the origin to eliminate torques from forces you 
don’t know, pick a system so that an unknown force acts entirely within it and 
hence does not change the system’s momentum… Given that the problem 
involves some particular thing (constant acceleration, momentum) think over 
all the equations that involve this concept. 

III.	 Carry our your plan – solve the problem! 

This generally involves mathematical manipulations. Try to keep them as 
simple as possible by not substituting in lengthy algebraic expressions until 
the end is in sight, make your work as neat as you can to ease checking and 
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reduce careless mistakes. Keep a clear idea of where you are going and have 
been (label the equations and what you have now found), if possible, check 
each step as you proceed.  

IV. Look Back – check your solution and method of solution 

Can you see that the answer is correct now that you have it – often simply by 
retrospective inspection? Can you solve it a different way? Is the problem 
equivalent to one you’ve solved before if the variables have some specific 
values? 

In physics: Check dimensions if analytic, units if numerical. Check special 
cases (for instance, for a problem involving two massive objects moving on an 
inclined plane, if m1 = m2 or q = 0 does the solution reduce to a simple 
expression that you can easily derive by inspection or a simple argument?) Is 
the scaling what you’d expect (an energy should vary as the velocity squared, 
or linearly with the height). Does it depend sensibly on the various quantities 
(e.g. is the acceleration less if the masses are larger, more if the spring has a 
larger k )? Is the answer physically reasonable (especially if numbers are 
given or reasonable ones substituted). 

Review the schema of your solution: Review and try to remember the 
outline of the solution – what is the model, the physical approximations, the 
concepts needed, and any tricky math manipulation. 

2.2 Significant Figures, Scientific Notation, and Rounding 

Significant Figures 

We shall define significant figures by the following rules.2 

1.	 The leftmost nonzero digit is the most significant digit. 

2.	 If there is no decimal place, the rightmost nonzero digit is the least significant 
digit. 

3.	 If there is a decimal point then the right most digit is the least significant digit 
even if it is a zero. 

4.	 All digits between the least and most significant digits are counted as significant 
digits. 

2 Philip R Bevington and D. Keith Robinson, Data Reduction and Error Analysis for the Physical Sciences,
2nd Edition, McGraw-Hill, Inc., New York, 1992. 
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When reporting the results of an experiment, the number of significant digits used 
in reporting the result is the number of digits needed to state the result of that 
measurement (or a calculation based on that measurement) without any loss of precision. 

There are exceptions to these rules, so you may want to carry around one extra 
significant digit until you report your result. For example if you multiply 2 ! 0.56 = 1.12 , 
not 1.1 . 

There is some ambiguity about the number of significant figure when the 
rightmost digit is 0, for example 1050, with no terminal decimal point. This has only 
three significant digits. If all the digits are significant the number should be written as 
1050., with a terminal decimal point. To avoid this ambiguity it is wiser to use scientific 
notation.   

Scientific Notation 

Careless use of significant digits can be easily avoided by the use of decimal notation 
times the appropriate power of ten for the number. Then all the significant digits are 
manifestly evident in the decimal number. So the number 1050 = 1.05 ! 103 while the 
number 1050. = 1.050 ! 103 . 

Rounding 

To round off a number by eliminating insignificant digits we have three rules. For 
practical purposes, rounding will be done automatically by a calculator or computer, and 
all we need do is set the desired number of significant figures for whichever tool is used. 

1. If the fraction is greater than 1/2, increment the new least significant digit. 

2. If the fraction is less than 1/2, do not increment. 

3. If the fraction equals 1/2, increment the least significant digit only if it is odd. 

The reason for Rule 3 is that a fractional value of 1/2 may result from a previous 
rounding up of a fraction that was slightly less than 1/2 or a rounding down of a fraction 
that was slightly greater than 1/2. For example, 1.249 and 1.251 both round to three 
significant digits 1.25. If we were to round again to two significant digits, both would 
yield the same value, either 1.2 or 1.3 depending on our convention in Rule 3. Choosing 
to round up if the resulting last digit is odd and to round down if the resulting last digit is 
even reduces the systematic errors that would otherwise be introduced into the average of 
a group of such numbers. 
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2.3 Order of Magnitude Estimates - Fermi Problems 

Counting is the first mathematical skill we learn. We came to use this skill by 
distinguishing elements into groups of similar objects, but we run into problems when our 
desired objects are not easily identified, or there are too many to count. 

Rather than spending a huge amount of effort to attempt an exact count, we can 
try to estimate the number of objects in a collection. For example, we can try to estimate 
the total number of grains of sand contained in a bucket of sand. Since we can see 
individual grains of sand, we expect the number to be very large but finite. Sometimes we 
can try to estimate a number which we are fairly sure but not certain is finite, such as the 
number of particles in the universe (See Chapter 20). 

We can also assign numbers to quantities that carry dimensions, such as mass, 
length, time, or charge, which may be difficult to measure exactly. We may be interested 
in estimating the mass of the air inside a room, or the length of telephone wire in the 
United States, or the amount of time that we have slept in our lives, or the number of 
electrons inside our body. So we choose some set of units, such as kilograms, miles, 
hours, and coulombs, and then we can attempt to estimate the number with respect to our 
standard quantity. 

Often we are interested in estimating quantities such as speed, force, energy, or 
power. We may want to estimate our natural walking speed, or the force of wind acting 
against a bicycle rider, or the total energy consumption of a country, or the electrical 
power necessary to operate this institute. All of these quantities have no exact, well-
defined value; they instead lie within some range of values. 

When we make these types of estimates, we should be satisfied if our estimate is 
reasonably close to the middle of the range of possible values. But what does “reasonably 
close” mean? Once again, this depends on what quantities we are estimating. If we are 
describing a quantity that has a very large number associated with it, then an estimate 
within an order of magnitude should be satisfactory. The number of molecules in a breath 
of air is close to1022 ; an estimate anywhere between 1021 and 1023 molecules is close 
enough. If we are trying to win a contest by estimating the number of marbles in a glass 
container, we cannot be so imprecise; we must hope that our estimate is within 1% of the 
real quantity. 

These types of estimations are called Fermi Problems. The technique is named 
after the physicist Enrico Fermi, who was famous for making these sorts of “back of the 
envelope” calculations. 

Methodology for Estimation Problems 

Estimating is a skill that improves with practice. Here are two guiding principles that may 
help you get started. 
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(1) You must identify a set of quantities that can be estimated or calculated. 

(2) You must establish an approximate or exact relationship between these quantities 
and the quantity to be estimated in the problem. 

Estimations may be characterized by a precise relationship between an estimated 
quantity and the quantity of interest in the problem. When we estimate, we are drawing 
upon what we know. But different people are more familiar with certain things than 
others. If you are basing your estimate on a fact that you already know, the accuracy of 
your estimate will depend on the accuracy of your previous knowledge. When there is no 
precise relationship between estimated quantities and the quantity to be estimated in the 
problem, then the accuracy of the result will depend on the type of relationships you 
decide upon. There are often many approaches to an estimation problem leading to a 
reasonably accurate estimate. So use your creativity and imagination! 

Example: Lining Up Pennies 

Suppose you want to line pennies up, diameter to diameter, until the total length is 
1 kilometer . How many pennies will you need? How accurate is this estimation? 

Solution: The first step is to consider what type of quantity is being estimated. In this 
example we are estimating a dimensionless scalar quantity, the number of pennies. We 
can now give a precise relationship for the number of pennies needed to mark off 1 
kilometer 

# of pennies = 
totaldistance 

diameter of penny 
. (2.3.1) 

We can estimate a penny to be approximately 2 centimeters wide. Therefore the number 
of pennies is 

# of pennies= 
totaldistance (1 km) 

= 5 ! 104 pennies . (2.3.2) = 
length of a penny (2 cm)(1 km / 105 cm) 

When applying numbers to relationships we must be careful to convert units whenever 
necessary. 

How accurate is this estimation? If you measure the size of a penny, you will find out that 
the width is 1.9 cm , so our estimate was accurate to within 5%. This accuracy was 
fortuitous. Suppose we estimated the length of a penny to be 1 cm. Then our estimate for 
the total number of pennies would be within a factor of 2, a margin of error we can live 
with for this type of problem. 
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Example: Estimate the total mass of all the water in the earth's oceans. 

Solution: In this example we are estimating mass, a quantity that is a fundamental in SI 
units, and is measured in kg. Initially we will try to estimate two quantities: the density of 
water and the volume of water contained in the oceans. Then the relationship we want is 

(mass)ocean =(density)water (volume)ocean . (2.3.3) 

One of the hardest aspects of estimation problems is to decide which relationship applies. 
One way to check your work is to check dimensions. Density has dimensions of 
mass/volume, so our relationship is 

! mass $(mass ocean )= #" volume %& 
(volume ocean ) . (2.3.4) 

The density of fresh water is !water = 1.0 g " cm#3 ; the density of seawater is slightly 
higher, but the difference won’t matter for this estimate. You could estimate this density 
by envisioning how much mass is contained in a one-liter bottle of water. (The density of 
water is a point of reference for all density problems. Suppose we need to estimate the 
density of iron. If we compare iron to water, we estimate that iron is 5 to 10 times denser 
than water. The actual density of iron is !iron = 7.8 g " cm-3 ). 

Since there is no precise relationship, estimating the volume of water in the oceans is 
much harder. Let’s model the volume occupied by the oceans as if they completely cover 
the earth, forming a spherical shell (Figure 1.5, which is decidedly not to scale). The 
volume of a spherical shell of radius Rearth and thickness d is 

volume ! (4 R2 d ) , (2.3.5) shell earth 

where Rearth is the radius of the earth and d is the average depth of the ocean. 

Figure 1.5 A model for estimating the mass of the oceans. 
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We first estimate that the oceans cover about 75% of the surface of the earth. So the 
volume of the oceans is 

volume ! (0.75)(4" R2 d ) . (2.3.6) ocean earth 

We therefore have two more quantities to estimate, the average depth of the ocean, which 
we can estimate the order of magnitude as d ! 1km , and the radius of the earth, which is 
approximately Rearth ! 6 " 103km . (The quantity that you may remember is the 
circumference of the earth, about 25,000 miles . Historically the circumference of the 
earth was defined to be 4 ! 107 m ). The radius Rearth and the circumference s are exactly 
related by 

s = 2! Rearth . (2.3.7) 

Thus 

Rearth 2
s 
! 

(2.5 " 104 mi 

2
) 
! 

(1.6 km # mi-1 )
= 6.4 " 103 km (2.3.8) = = 

We will use Rearth ! 6 " 103km ; additional accuracy is not necessary for this problem, 
since the ocean depth estimate is clearly less accurate. In fact, the factor of 75% is not 
needed, but included more or less from habit. 

Altogether, our estimate for the mass of the oceans is 

(mass) =(density) (volume) ! " (0.75)(4# R2 d ) , (2.3.9) ocean water ocean water earth 

(mass)ocean ! $
" 1g

3 '
% 
$
" 1 kg % " (105 cm)3 %

' (0.75)(4 )(6 ( 103 km)2(1km) , (2.3.10) 
# cm & #103 g &' #$ (1 km)3 & 

(mass)ocean ! 3 " 1020 kg ! 1020 kg 
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