## Problem Solving and Estimation <br> Concept Questions

Question 1 What is your best estimate of the volume of one breath?

1) between $1 / 10$ and 1 liter
2) between 1 and 10 liters
3) between 10 and 100 liters
4) between 100 and 1000 liters

Answer 2. I estimate the volume of the lungs by estimating the volume of an average sized person's upper body with dimensions 0.3 meters by 0.2 meters by 0.2 meters which is approximately $10 \times 10^{-3} \mathrm{~m}^{3}$. One liter is $10^{3} \mathrm{~cm}^{3}=10^{-3} \mathrm{~m}^{3}$. So this volume is approximately 10 liters. A typical breath occupies half this volume so between 1 and 10 liters.

Question 2 What is your best estimate for the volume of the earth's atmosphere?

1) between $10^{1}$ and $10^{5}$ cubic meters
2) between $10^{5}$ and $10^{10}$ cubic meters
3) between $10^{10}$ and $10^{15}$ cubic meters
4) between $10^{15}$ and $10^{20}$ cubic meters
5) between $10^{20}$ and $10^{25}$ cubic meters
6) between $10^{25}$ and $10^{30}$ cubic meters

Answer 4. The volume is a scalar quantity. Approximate the volume of the atmosphere by a spherical shell of radius r and thickness t with volume $V_{e} \cong 4 \pi r^{2} t$ where the thickness of shell is approximately $t \cong 10 \mathrm{~km}=10^{4} \mathrm{~m}$ and the radius of shell equals the radius of the earth, $R_{e} \cong 6 \times 10^{3} \mathrm{~km}=6 \times 10^{6} \mathrm{~m}$. So the volume is approximately

$$
V_{e} \cong 4 \pi r^{2} t=4 \pi\left(6 \times 10^{6} \mathrm{~m}\right)^{2}\left(10^{4} \mathrm{~m}\right)=4 \times 10^{18} \mathrm{~m}^{3}
$$

Question 3 What is your best estimate for the number of molecules in the earth's atmosphere?

1. Less than $10^{1}$ molecules.
2. Between $10^{10}$ and $10^{20}$ molecules.
3. Between $10^{20}$ and $10^{30}$ molecules.
4. Between $10^{30}$ and $10^{40}$ molecules.
5. Between $10^{40}$ and $10^{50}$ molecules.
6. Between $10^{50}$ and $10^{60}$ molecules.
7. Between $10^{60}$ and $10^{70}$ molecules.
8. Between $10^{70}$ and $10^{80}$ molecules.
9. More than $10^{80}$ molecules.

Answer 5. One mole of an ideal gas STP (Standard Temperature and Pressure) occupies $22.4 \mathrm{~L} \cong 20 \times 10^{-3} \mathrm{~m}^{-3}$, so the number of moles of air in the atmosphere is approximately

$$
4 \times 10^{18} \mathrm{~m}^{3} / 20 \times 10^{-3} \mathrm{~m}^{-3} \cong 2 \times 10^{20} \mathrm{moles}
$$

There are approximately $6 \times 10^{23}$ molecules $/$ mole. Therefore there are approximately

$$
\left(2 \times 10^{20} \text { moles }\right)\left(6 \times 10^{23} \text { molecules } / \mathrm{mole}\right) \cong 10^{44} \text { molecules }
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

