Problem Solving and Estimation Concept Questions

Question 1 What is your best estimate of the volume of one breath?

- 1) between 1/10 and 1 liter
- 2) between 1 and 10 liters
- 3) between 10 and 100 liters
- 4) between 100 and 1000 liters

Answer 2. I estimate the volume of the lungs by estimating the volume of an average sized person's upper body with dimensions 0.3 meters by 0.2 meters by 0.2 meters which is approximately 10×10^{-3} m³. One liter is 10^3 cm³ = 10^{-3} m³. So this volume is approximately 10 liters. A typical breath occupies half this volume so between 1 and 10 liters.

Question 2 What is your best estimate for the volume of the earth's atmosphere?

- 1) between 10^1 and 10^5 cubic meters
- 2) between 10^5 and 10^{10} cubic meters
- 3) between 10^{10} and 10^{15} cubic meters
- 4) between 10^{15} and 10^{20} cubic meters
- 5) between 10^{20} and 10^{25} cubic meters
- 6) between 10^{25} and 10^{30} cubic meters

Answer 4. The volume is a scalar quantity. Approximate the volume of the atmosphere by a spherical shell of radius r and thickness t with volume $V_e \cong 4\pi r^2 t$ where the thickness of shell is approximately $t \cong 10 \text{ km} = 10^4 \text{ m}$ and the radius of shell equals the radius of the earth, $R_e \cong 6 \times 10^3 \text{ km} = 6 \times 10^6 \text{ m}$. So the volume is approximately

$$V_e \cong 4\pi r^2 t = 4\pi (6 \times 10^6 \text{ m})^2 (10^4 \text{ m}) = 4 \times 10^{18} \text{ m}^3.$$

Question 3 What is your best estimate for the number of molecules in the earth's atmosphere?

- 1. Less than 10^1 molecules.
- 2. Between 10^{10} and 10^{20} molecules.
- 3. Between 10^{20} and 10^{30} molecules.
- 4. Between 10^{30} and 10^{40} molecules.
- 5. Between 10^{40} and 10^{50} molecules.
- 6. Between 10^{50} and 10^{60} molecules.
- 7. Between 10^{60} and 10^{70} molecules. 8. Between 10^{70} and 10^{80} molecules.
- 9. More than 10^{80} molecules.

Answer 5. One mole of an ideal gas STP (Standard Temperature and Pressure) occupies $22.4 \text{ L} \cong 20 \times 10^{-3} \text{ m}^{-3}$, so the number of moles of air in the atmosphere is approximately

$$4 \times 10^{18} \, \text{m}^3 / 20 \times 10^{-3} \, \text{m}^{-3} \cong 2 \times 10^{20} \, \text{moles}$$
.

There are approximately 6×10^{23} molecules/mole. Therefore there are approximately

 $(2 \times 10^{20} \text{ moles})(6 \times 10^{23} \text{ molecules/mole}) \cong 10^{44} \text{ molecules}$

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.