Vectors Concept Questions

Question 1. Consider the pair of units vectors ($\hat{\mathbf{i}}_{P}, \hat{\mathbf{j}}_{P}$) located at the point P, and the pair of units vectors $\left(\hat{\mathbf{i}}_{S}, \hat{\mathbf{j}}_{S}\right)$ located at the point S. Which of the following statements is true?

1) $\quad \hat{\mathbf{i}}_{P} \neq \hat{\mathbf{i}}_{S}$
2) $\quad \hat{\mathbf{j}}_{P} \neq \hat{\mathbf{j}}_{S}$
3) $\quad \hat{\mathbf{i}}_{P}=\hat{\mathbf{i}}_{S}$
4) $\quad \hat{\mathbf{j}}_{P}=\hat{\mathbf{j}}_{S}$

Question 2. Consider the pair of units vectors $\left(\hat{\mathbf{r}}_{P}, \hat{\boldsymbol{\theta}}_{P}\right)$ located at the point P, and the pair of units vectors ($\hat{\mathbf{r}}_{S}, \hat{\boldsymbol{\theta}}_{S}$) located at the point S. Which of the following statements is true?

1) $\quad \hat{\mathbf{r}}_{P} \neq \hat{\mathbf{r}}_{S}$
2) $\quad \hat{\boldsymbol{\theta}}_{P} \neq \hat{\boldsymbol{\theta}}_{S}$
3) $\quad \hat{\mathbf{r}}_{P}=\hat{\mathbf{r}}_{S}$
4) $\quad \hat{\boldsymbol{\theta}}_{P}=\hat{\boldsymbol{\theta}}_{S}$

Question 3. Consider two vectors $\overrightarrow{\mathbf{A}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{B}}=-6 \hat{\mathbf{i}}+4 \hat{\mathbf{k}}$. The two vectors are

1. parallel.
2. perpendicular.
3. neither parallel or perpendicular.

Question 4 Consider a vector $\overrightarrow{\mathbf{A}}$ with $|\overrightarrow{\mathbf{A}}|>1$. The unit vector pointing in the same direction as the vector $\overrightarrow{\mathbf{A}}$ is given by

1) $\quad \frac{|\overrightarrow{\mathbf{A}}|}{\overrightarrow{\mathbf{A}}}$
2) $\quad \frac{\overrightarrow{\mathbf{A}}}{|\overrightarrow{\mathbf{A}}|}$
3) $\quad|\overrightarrow{\mathbf{A}}| \overrightarrow{\mathbf{A}}$
4) $\quad \frac{1}{|\overrightarrow{\mathbf{A}}| \overrightarrow{\mathbf{A}}}$

Question 5 Consider two vectors $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}, \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{z} \hat{\mathbf{k}}$ with $A_{x}<0, B_{x}<0$, and $B_{z}>0$. The cross product $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ points in the

1) $+x$-direction
2) -x-direction
3) $+y$-direction
4) $-y$-direction
5) $+z$-direction
6) -z-direction
7) None of the above directions

MIT OpenCourseWare
http://ocw.mit.edu

8.01SC Physics I: Classical Mechanics

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

