
Module 18: Collision Theory 

18.1 Introduction 

In the previous module we considered examples in which two objects collide and stick 
together, and either there were no external forces acting in some direction (or the 
collision was nearly instantaneous) so the component of the momentum of the system 
along that direction is constant. We shall now study collisions between objects in more 
detail. In particular we shall consider cases in which the objects do not stick together. The 
momentum along a certain direction may still be constant but the mechanical energy of 
the system may change. We will begin our analysis by considering two-particle collision. 
We introduce the concept of the relative velocity between two particles and show that it 
is independent of the choice of reference frame. We then show that the change in kinetic 
energy only depends on the change of the square of the relative velocity and therefore is 
also independent of the choice of reference frame. We will then study one- and two-
dimensional collisions with zero change in potential energy. On particular we will 
characterize the types of collisions by the change in kinetic energy and analyze the 
possible outcomes of the collisions. 

18.2 Reference Frames Relative and Velocities 

We shall recall our definition of relative inertial reference frames (add link). Let ! 
R be the vector from the origin of frame S to the origin of reference frame S ! . Denote 
the position vector of particle i with respect to origin of reference frame S by r! i and 
similarly, denote the position vector of particle i with respect to origin of reference frame 
S ! by r! i! (Figure 18.1). 

Figure 18.1 Position vector of i th particle in two reference frames. 

The position vectors are related by 

r ! i = r ! i!+ R 
! 

. (18.2.1) 

The relative velocity (call this the boost velocity) between the two reference frames is 
given by 
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V 
! 
= ddt 
R 
! 

. (18.2.2) 

Assume the boost velocity between the two reference frames is constant. Then, the 
relative acceleration between the two reference frames is zero, 

! 
A = dV 

! 
= 0 
! 

, (18.2.3) dt 

When Eq. (18.2.3) is satisfied, the reference frames S and S ! are called relatively 
inertial reference frames. 

Suppose the i th particle in Figure 18.1 is moving; then observers in different 
reference frames will measure different velocities. Denote the velocity of i th particle in 
frame S by v! i = dr! i / dt , and the velocity of the same particle in frame S ! by 
v! !i = dr!! / dt . Since the derivative of the position is velocity, the velocities of the particles 
in two different reference frames are related according to  

v ! i = v !!i + V 
! 

. (18.2.4) 

Center of Mass Reference Frame 
! 

Let R cm be the vector from the origin of frame S to the center of mass of the 
system of particles, a point that we will choose as the origin of reference frame Scm , 
called the center of mass reference frame. Denote the position vector of particle i with 
respect to origin of reference frame S by r! i and similarly, denote the position vector of 
particle i with respect to origin of reference frame Scm by r ! cm,i (Figure 18.1A). 

Figure 18.1A Position vector of ith particle in the center of mass reference frame. 

The position vector of particle i in the center of mass frame is then given by 
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!

! 
R
 .
 (18.2.5)
= cm,i i cm 

The velocity of particle i in the center of mass reference frame is then given by 

!r!r 

= 

There are many collision problems in which the center of mass reference frame is the 
most convenient reference frame to analyze the collision. 

Relative Velocities 

Consider two particles of masses m1 and m2 interacting via some force. 

!v!v 
! 
V
!
 (18.2.6)
cm,i i .
cm 

Figure 18.2 Two interacting particles 

Choose a coordinate system (Figure 18.3) in which the position vector of body 1 is given 
by r! 1 and the position vector of body 2 is given by r! 2 . The relative position of body 1 
with respect to body 2 is given by r ! 1 2 , = r ! 1 ! r ! 2 . 

Figure 18.3 Coordinate system for two bodies. 

During the course of the interaction, body 1 is displaced by dr ! 1 and body 2 is displaced 
by dr ! 2 , so the relative displacement of the two bodies during the interaction is given by 
dr ! 1 2 , = dr ! 1 ! dr ! 2 . The relative velocity between the particles is 
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! dr ! 1 2 , = 
dr ! 1 ! 

dr ! 2 = v ! 1 ! v ! 2 . (18.2.7) , v1 2 = 
dt dt dt 

We shall now show that the relative velocity between the two particles is independent of 
the choice of reference frame providing that the reference frames are relatively inertial. 
The relative velocity v!! in reference frame S ! can be determined from using Eq. 12

(18.2.4) to express Eq. (18.2.7) in terms of the velocities in the in reference frame S ! , 

! v1 " v" 2 v1, 2 "
!!!
!
 !


= (v! 1 " V) ! (v! " 2 

! !

V) =
 (18.2.8)
!
 !
v1, 2 = v1 v2 +
 +
 =


and is equal to the relative velocity in frame S . 

For a two-particle interaction, the relative velocity between the two vectors is 
independent of the choice of reference frame. 

In Appendix 12.A: Work Done on a System of Two Particles (add link), we showed 
that when two particles of masses m1 and m2 interact, the change of kinetic energy 
between the final state B and the initial state A due to the interaction force only is equal 
to 

!K = 
1 
µ(vB 

2 " vA 
2 ) (18.2.9) 
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where µ = m1m2 / (m1 + m2 ) is the reduced mass of the two-particle system. (If Eq. 
(18.2.3) did not hold, Eq. (18.2.9) would not be valid in all frames.) 

In Eq. (18.2.9), the square of the final relative velocity (v! 1)B ! (v! 2 )B is given by 

2(v1, 2 )B = ((!v1 )B ! (!v2 )B ) " ((
!v1 )B ! (!v2 )B ) (18.2.10) 

and the square of the initial relative velocity (v! 1)A ! (v! 2 )A is given by 

2(v1, 2 )A = ((!v1 )A ! (!v2 )A ) " ((
!v1 )A ! (!v2 )A ) . (18.2.11) 

By expressing the change of kinetic energy in terms of the relative velocity, a quantity 
that is independent of the reference frame, 

the change in kinetic energy is therefore independent of the choice of reference 
frame. 

18.3 Characterizing Collisions 
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In a collision, the ratio of the magnitudes of the initial and final relative velocities is 
called the coefficient of restitution and denoted by the symbol e , 

e = 
vB . (18.3.1) 
vA 

If the magnitude of the relative velocity does not change during a collision, e = 1, then 
the change in kinetic energy is zero, (Eq. (18.2.9)). Collisions in which there is no change 
in kinetic energy are called elastic collisions, 

!K = 0, elastic collision . (18.3.2) 

If the magnitude of the final relative velocity is less than the magnitude of the initial 
relative velocity, e < 1, then the change in kinetic energy is negative. Collisions in which 
the kinetic energy decreases are called inelastic collisions, 

!K < 0, inelastic collision . (18.3.3) 

If the two objects stick together after the collision, then the relative final velocity is zero, 
e = 0 . Such collisions are called totally inelastic. The change in kinetic energy can be 
found from Eq. (18.2.9), 

!K = " 
1
2 
µ vA

2 = " 
1
2 m
m m 1 

+ m 
2 vA 

2 , totally inelastic collision . (18.3.4) 
1 2 

If the magnitude of the final relative velocity is greater than the magnitude of the initial 
relative velocity, e > 1, then the change in kinetic energy is positive. Collisions in which 
the kinetic energy increases are called superelastic collisions, 

!K > 0, superelastic collision . (18.3.5) 

18.4 One-Dimensional Elastic Collision Between Two Objects 

Consider a one-dimensional completely elastic collision between two objects moving in 
the x -direction. One object, with mass m1 and initial x -component of the velocity vx1,0 , 
collides with an object of mass m2 and initial x -component of the velocity vx2,0 . The 
scalar components vx1,0 and vx2,0 can be positive, negative or zero. No forces other than 
the interaction force between the objects act during the collision. After the collision, the 
velocity components are vx1, f and vx2, f . 
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Because there are no external forces x -direction, momentum is constant in the x -
direction. Equating the momentum components before and after the collision gives the 
relation 

m v + m v = m v + m v . (18.4.1) 1 x1,0 2 x2,0 1 x1, f 2 x2, f 

Because the collision is elastic, kinetic energy is constant. Equating the kinetic energy 
before and after the collision gives the relation 

m v 2 + m v 2 = m v 2 + m v 2 (18.4.2) 1 x1,0 2 x2,0 1 x1, f 2 x2, f 

where the factor of 1/ 2 before each term in Eq. (18.4.2) has been divided out. Rewrite 
these Eq.s as 

m1(vx1,0 ! vx1, f ) = m2 (vx2, f ! vx2,0 ) (18.4.3) 

m1(vx
2
1,0 ! vx

2
1, f ) = m2 (vx

2
2, f ! vx

2
2,0 ) . (18.4.4) 

The second Eq. above (18.4.4)can be written as 

m1(vx1,0 ! vx1, f )(vx1,0 + vx1, f ) = m2 (vx 2, f ! vx 2,0 )(vx2, f + vx2,0 ) . (18.4.5) 

Divide the kinetic energy Eq. (18.4.4) by the momentum Eq. (18.4.3), yielding 

vx1,0 + vx1, f = vx2,0 + vx2, f . (18.4.6) 

Eq. (18.4.6) may be expressed as 

vx1,0 ! vx2,0 = vx2, f ! vx1, f . (18.4.7) 

The relative velocity between the two objects is defined to be 

v ! rel = v ! 1 ! v ! 2 . (18.4.8) 

The quantity vxrel ,0 = vx1,0 ! vx2,0 is the initial component of the relative velocity, and 
vxrel f , = !(vx2, f ! vx1, f ) is the final component of the relative velocity. So we find that 

vxrel ,0 = !vxrel f , . (18.4.9) 

or by taking absolute values that the initial and final relative speeds are equal. Eq. 
(18.4.7) may be rewritten as 

6 



 

1, x fv 2, x fv= 1,0 2,0 x xv v! + (18.4.10) 

Now substitute Eq. (18.4.10) into Eq. (18.4.1) yields 

m1v x1,0 + m2v x 2,0 = m1v x1, f + m2 (v x1,0 + v x1, f ! v x2,0 ) . (18.4.11) 

Solving Eq. (18.4.11) for v x1, f involves some algebra and yields 

v x1, f = v x1,0 

m1 ! m2 

m1 + m2 

+ v x2,0 

2 m2 

m1 + m2 

(18.4.12) 

and a similar calculation yields 

m2 ! m1 2 m1 . (18.4.13) v = v + v x 2, f x2,0 m2 + m1 
x1,0 m2 + m1 

Consider what happens in the limits m1 ! m2 in Eq. (18.4.12).  Then 

vx1, f ! vx1,0 + vx 2,0 (2m2 / m1) ; (18.4.14) 

the more massive object’s velocity component is only slightly changed by an amount 
proportional to the less massive object’s momentum component. 

vx2, f ! "vx2,0 + 2vx1,0 = vx1,0 + vx1,0 " vx2,0 . (18.4.15) 

We can rewrite this as 

vx 2, f ! vx1,0 = vx1,0 ! vx2,0 . (18.4.16) 

i.e. the less massive object “rebounds” with the same speed relative to the more massive 
object. 

If the objects are identical, or have the same mass, Eqs. (18.4.12) and (18.4.13) become 

vx1, f = vx2,0 , vx 2, f = vx1,0 ; (18.4.17) 

the objects have exchanged velocities, and unless we could somehow distinguish the 
objects, we might not be able to tell if there was a collision at all.  
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One-Dimensional Collision Between Two Objects – Center of Mass Reference 
Frame 

Consider the one-dimensional elastic collision described above. Now let’s view the 
collision from the center of mass (CoM) frame. The velocity component of the center of 
mass is 

m v + m v1 x1,0 2 x2,0 . (18.4.18) v = x,cm m1 + m2 

With respect to the center of mass, the velocity components of the objects are 

vx!1,0 = vx1,0 " v x,cm = (vx1,0 " vx2,0 ) 
m2 

m1 + m2 (18.4.19) 
.vx!2,0 = vx 2,0 " v x,cm = (vx ,2,0 " vx ,1,0 ) m1 

m
+ 

1 

m2 

In the CoM frame there is no total momentum before the collision and hence no total 
momentum after the collision. For an elastic collision, the only way for both momentum 
and kinetic energy to be the same before and after the collision is for either the objects 
have the same velocity (a miss) or to reverse the direction of the velocities.  
Symbolically, in the CoM frame, the final velocity components are 

vx!1, f = "vx!1,0 = (vx 2,0 " vx1,0 ) 
m2 

m1 + m2 (18.4.20) 
m1 .vx !2, f = "vx!2,0 = (vx2,0 " vx1,0 ) m1 + m2 

The final velocity components are then given by 

v = v! + v x1, f x1, f x,cm 

= (v " v ) 
m2 

m1 v1,0 + m2 v2,0 (18.4.21) + x2,0 x1,0 m1 + m2 m1 + m2 

m1 " m2 2 m2= v + v x1,0 m1 + m2 
x 2,0 m1 + m2 

as in Eq. (18.4.12) and a similar calculation that reproduces Eq. (18.4.13). 
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18.5 Worked Examples 

18.5.1 Example Elastic One-Dimensional Collision Between Two Objects Consider 
the elastic collision of two carts along a track; the incident cart 1 has mass m1 and moves 
with initial speed v1,0 . The target cart has mass m2 = 2 m1 and is initially at rest, v2,0 = 0 . 

Immediately after the collision, the incident cart has final speed v1, f and the target cart 

has final speed v2, f . Calculate the final velocities of the carts as a function of the initial 

speed v1,0 . 

Solution 

Draw a “momentum flow” diagram for the objects before (initial state) and after (final 
state) the collision (Figure 18.5, with a greatly simplified rendering of a “cart”). 

Figure 18.5 Momentum flow diagram for elastic one-dimensional collision 

We can immediately use our results above with m2 = 2 m1 and v2,0 = 0 . The final x -
component of velocity of cart 1 is given by Eq. (18.4.12) 

1 
v = !v . (18.5.1) x1, f x1,0 3 

The final x -component of velocity of cart 2 is given by Eq. (18.4.13) 

2 
v = v . (18.5.2) x2, f x1,0 3 
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Example 18.5.2 The Dissipation of Kinetic Energy in a Completely Inelastic 
Collision Between Two Objects 

For the general case, an incident object of mass m1 and initial speed v0 collides 
completely inelastically with a target object of mass m2 that is initially at rest. There are 
no external forces acting on the objects in the direction of the collision. Find 
!K / K initial = (Kfinal " K initial ) / K initial . 

In the absence of any net force on the system consisting of the two objects, the 
momentum after the collision will be the same as before the collision. After the collision 
the objects will move in the direction of the initial velocity of the incident object with a 
common speed v f found from 

(m1 + m2 )vf = m1 v0 

m1 
(18.5.3) 

vf = v0 . 
m1 + m2 

The change in kinetic energy to the initial kinetic energy  !K = (Kfinal " K initial ) is 

!K = (Kfinal " K initial ) = 
1 1 

2
(m1 + m2 )v

2 
f " 
2 
v0
2 

2
1 2 # m1 & 1 2 = 
2
(m1 + m2 )v0 $% m1 + m2 '

( " 
2 
v0 

(18.5.4) 
1 2 # m1 " 1

&
( = 

2 
m1v0 %$ m1 + m2 '

1 2 m2= " .
2 
m1v0 m1 + m2 

The ratio of the change in kinetic energy to the initial kinetic energy  is then 

!K / K initial = " 
m1 

m
+ 
2 

m2

. (18.5.5) 

18.5.3 Example: Elastic Two-Dimensional Collision 

Object 1 with mass m1 is initially moving with a speed v1,0 = 3.0m ! s "1 and collides 

elastically with object 2 that has the same mass, m2 = m1 , and is initially at rest. After the 

collision, object 1 moves with an unknown speed v1, f 
at an angle !1, f = 30! with respect 
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to its initial direction of motion and object 2 moves with an unknown speed v2, f , at an 

unknown angle !2, f (as shown in the Figure 18.6). Find the final speeds of each of the 

objects and the angle !2, f . 

Figure 18.6 Momentum flow diagram for two-dimensional elastic collision 

Solution: 

Choose a set of positive unit vectors for the initial and final states as shown in Figure 
18.7. We designate the respective speeds of each of the particles on the momentum flow 
diagrams. 

Figure 18.7 Choice of unit vectors for momentum flow diagram 

Initial State: The components of the total momentum p 
! 
0
total = m1v 

! 
1,0 + m2v 

! 
2,0 in the initial 

state are given by 

total px ,0 = m1v1,0 (18.5.6) 
total py ,0 = 0. 

Final State: The components of the momentum p 
! total = m v ! + m v ! in the final state f 1 1, f 2 2, f 

are given by 
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p total = m v cos ! + m v cos !x, f 1 1, f 1, f 1 2, f 2, f (18.5.7) 
p total = m v sin ! " m v sin ! .y f , 1 1, f 1, f 1 2, f 2, f 

There are no any external forces acting on the system, so each component of the total 
momentum remains constant during the collision, 

p total = p total (18.5.8) x ,0 x , f 

total total py ,0 = py , f . (18.5.9) 

These two Eq.s become 

m v = m v cos ! + m v cos !1 1,0 1 1, f 1, f 1 2, f 2, f (18.5.10) 
0 = m v sin ! " m v sin ! .1 1, f 1, f 1 2, f 2, f 

The collision is elastic; the kinetic energy is the same before and after the collision, 

K total = K total , (18.5.11) 0 f 

or 
1 2 1 2 1 m1v2, 

2 
f . (18.5.12) 

2 
m1v1,0 = 

2 
m1v1, f + 

2 

We have three Eq.s, two momentum Eq.s and one energy Eq., with three unknown 
quantities, v1, f , v2, f and !2, f since we are already given that v1,0 = 3.0 m ! s "1 and 

!1, f = 30o . We first rewrite the expressions in Eq. (18.5.10), canceling the factors of m1 , 
as 

v2, f cos !2, f = v1,0 " v1, f cos !1, f (18.5.13) 
v2, f sin !2, f = v1, f sin !1, f . 

Add the squares of the expressions in Eq. (18.5.13), yielding 

v2, 
2 

f cos2 !2, f + v2, 
2 

f sin2 !2, f = (v1,0 " v1, f cos!1, f )
2 + v1, 

2 
f sin2 !1, f . (18.5.14) 

We can use the identities cos2 !2, f + sin2 !2, f = 1 and cos2 !1, f + sin2 !1, f = 1 to simplify 
Eq. (18.5.14), yielding 

2 2 2v2, f = v1,0 " 2v1,0 v1, f cos !1, f + v1, f . (18.5.15) 
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Substituting Eq. (18.5.15) into Eq. (18.5.12) yields 

= 
1 2 1 2 1 2 cos" 1, f 

2 ) . (18.5.16) 
2 

m1v1,0 2 
m1v1, f + 

2 
m1(v1,0 ! 2v1,0 v1, f + v1, f 

Eq.  (18.5.16) simplifies to 

0 = 2v1, 
2 
f " 2v1,0 v1, f cos !1, f , (18.5.17) 

which may be solved for the final speed of object 1, 

v1, f = v1,0 cos!1, f = (3.0 m " s#1)cos30! = 2.6 m " s#1 . (18.5.18) 

Divide the expressions in Eq. (18.5.13), yielding 

v2, f sin !2, f = 
v1, f sin !1, f . (18.5.19) 

v2, f cos !2, f v1,0 " v1, f cos !1, f 

Eq. (18.5.19) simplifies to 

tan !2, f = 
v1, f sin !1, f . (18.5.20) 

v1,0 " v1, f cos !1, f 

Thus object 2 moves at an angle 

!2, f = tan "1 
%
# v1, f sin!1, f 

& 

$ v1,0 " v1, f cos!1, f '
( 

# (2.6 m ) s "1)sin30! & 
! = tan "1 

2, f %$ 3.0 m ) s "1 " (2.6 m ) s "1)cos30! '( 
(18.5.21) 

= 60! . 

The above results for v1, f and !2 , f may be substituted into either of the expressions in 

Eq. (18.5.13), or Eq. (18.5.12), to find v2 , f = 1.5m ! s "1 . 

Before going on, it must be noted that the fact that !1, f +!2, f = 90 ! , that is, the objects 
move away from the collision point at right angles, is not a coincidence. A vector 
derivation is presented below. We can see this result algebraically from the above result.  
Using the result of Eq. (18.5.18), v1, f = v1,0 cos !1, f , in Eq. (18.5.20) yields 
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tan !2, f = 
cos !1, f sin 

2 

!1, f = cot !1, f ; (18.5.22) 
1" cos !1, f 

the angles !1, f and !2, f are complements. 

It should be noted that Eq. (18.5.17) also has the solution v2, f = 0 , which would 
correspond to the incident particle missing the target completely. 

18.5.4 Example Equal Mass Particles in a Two-Dimensional Elastic Collision 
Emerge at Right Angles 

We can prove that the equal mass particles emerge from the collision at right angles by 
making explicit use of the fact that momentum is a vector quantity. 

Since there are no external forces acting on the two objects during the collision (the 
collision forces are all internal), momentum is constant. Therefore 

! total ! total p0 = p f (18.5.23) 

which becomes 

m1v 
! 
1, 0 = m1v 

! 
1, f + m1v 

! 
2, f (18.5.24) 

Eq. (18.5.24) simplifies to 

v ! 1, 0 = v ! 1, f + v ! 2, f . (18.5.25) 

Recall the vector identity that the square of the speed is given by the dot product 

v ! ! v ! = v2 . (18.5.26) 

With this identity in mind, we take the dot product of each side of Eq. (18.5.25) with 
itself, 

!v !

!v = (
!v !v !v !v) ! (
 )
+
 +
1, 0 1, 0 1, f 2, f 1, f 2, f (18.5.27)


=

!v !v !v !v !v !


!v+ 2
!
 !
 +
 2, f .1, f 1, f 1, f 2, f 2, f 

This becomes 

2 2 ! ! 2v1, 0 = v1, f + 2v1, f ! v2, f + v2, f . (18.5.28) 
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Recall that kinetic energy is the same before and after an elastic collision, and the masses 
of the two objects are equal, so Eq. (18.5.12) simplifies to 

v2 = v2 + v2 . (18.5.29) 1, 0 1, f 2, f 

Comparing Eq. (18.5.28) with Eq. (18.5.29), we see that 

v ! 1, f ! v 
! 
2, f = 0 . (18.5.30) 

The dot product of two nonzero vectors is zero when the two vectors are at right angles to 
each other. 

18.5.5 Example: Two-Dimensional Collision 

A particle of mass minc (for “mass of the incident particle”) with initial speed v0 collides 
with a particle of mass mtar (for “mass of the target particle”), initially at rest. After the 
collision the directions of the incident particle and the target particle are observed to be 
perpendicular. The speeds of the incident and target particles particle after the collision 
are determined to be 

3 v f , inc = 
5 
v0 

(18.5.31) 
1 v0.v f , tar = 
5 

What is the ratio mtar / minc ? Forces other than the interaction between the particles 
should be neglected. 

Solutions: 

Two methods of solution will be presented here.  The first is more straightforward, and 
the second involves a bit of a trick. 

First, take the positive x -direction to be the initial direction of motion of the incident 
particle, and denote the direction of motion of the incident particle after the collision as 
making an angle ! with respect to the x -direction and the direction of motion of the 
target particle after the collision as making an angle ! with respect to the x -direction, as 
shown in the diagram. (The magnitudes of the velocity vectors in the diagram are not to 
scale.) 
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Figure 18.9 Momentum flow diagram for two-particle collision 

From the conditions given in the problem, ! and ! are complementary angles, 
! + " = # / 2 . The linear momentum is a constant, 

minc v 
! 

0 = minc v 
! 
f , inc + mtar v 

! 
f , tar . (18.5.32) 

In component form, 

minc v0 = minc v f , inc cos ! + mtar v f , tar cos " 
(18.5.33) 

0 = minc v f , inc sin ! # mtar v f , tar sin " . 

At this point, it’s best to use the information given in the problem, that ! + " = # / 2 , to 
express the trigonometric functions of ! in terms of ! , cos ! = sin " , sin ! = cos " , so 
that the expressions in (18.5.33) reduce to 

minc v	0 = minc v f , inc cos ! + mtar v f , tar sin ! 
(18.5.34) 

0 = minc v f , inc sin ! " mtar v f , tar cos !. 

There are many valid ways to proceed from Eq.s (18.5.34).  Any algebraic manipulation 
will be equivalent to multiplying the first expression in (18.5.34) by cos! and the 
second by sin! and adding, canceling the mtar v f , tar terms, with the result 

mincv0 cos! = mincv f , inc (cos2 ! + sin2 ! ) = mincv f , inc . (18.5.35) 

From the observed speeds as given in (18.5.31), cos ! = 3/5 and so sin ! = 4 /5 (in 
degrees, ! " 37 ! ). From either expression in (18.5.34), 
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mtar v f , tar mtar v0 / 5 4 / 5 
= = 

minc v f , inc minc 3v0 / 5 3/ 5 
(18.5.36) 

mtar = 4. 
minc 

Alternate Solution: 

For this idealized situation, we can use the algebraic expression for momentum to obtain 
the same result. That is, denote the initial momentum by p! 0 and the final momenta by 
p 
! 
f , inc and p 

! 
f , tar . Equating initial momentum and total final momentum, 

p 
! 

0 = p 
! 
f , inc + p 

! 
f , tar . (18.5.37) 

The square of the magnitude of each side of Eq. (18.5.37) is found by taking the dot 
product of each side with itself, 

!p0 !

!p = (
!p f , inc 

!p f , tar 

!p !p f , tar )
) ! (
+
 +
0 

2 

f , inc 

+ 2

!p !p f , tar )2 )2 (18.5.38)
= ( p f , inc + ( p f , tar !
p0 f , inc 

= ( p f , inc )
2+ ( p f , tar )

2 

where the fact that the final velocities and hence the final momenta are perpendicular, 
p 
! 
f , inc !p 
! 
f , tar = 0 , has been used. The observations as given in (18.5.31), inserted into 

(18.5.38), give 

2 2 2 !

% 5
3 v0 

"
$
& 

2 

+ mtar 
2 !
#
% 

1
5 
v0 
"

&
$ 

2 

(18.5.39) minc v0 = minc # 

from which mtar = 4minc readily. 

It should be noted that this problem has been rigged to allow fairly simple calculation, 
primarily in giving the final velocities as being perpendicular and the ratios of the final 
speeds to the initial speed adjusted to give the final ratio of the masses to be an integer.  
A four-to-one ratio would not be unusual for elementary particles, but as will be seen in 
the next chapter, almost half of the initial kinetic energy has been lost, and in the absence 
of external forces, one particle would have to be in an extremely excited state.  
Sometimes, such collisions are taken to be representative of, for instance, ice hockey 
players colliding. In such collisions, losing half of the kinetic energy is typical, but 
having one player four times as massive as the other is bordering on unfair. 

The point of this example is that for a collision that needs to be analyzed in two 
dimensions, there will be four quantities needed to describe the final state, either two sets 
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of two components or two sets of components and angles. Equating initial and final 
momenta gives two relations, as in (18.5.33) above. The problem statement gave three 
relations involving the final velocities in terms of the initial velocities, two magnitudes 
and on relation between the directions. This may seem like too many relations, but 
consider the nature of the question; we sought the ratio of the masses, a fifth quantity.  
So, we had five relations between five unknowns and we were able to solve for the mass 
ratio. 

18.5.6 Example: Bouncing Superballs 

Two superballs are dropped from a height above the ground, one on top of the other. The 
ball on top has a mass m1 , and the ball on the bottom has a mass m2 . Assume that the 
when the lower ball collides with the ground there is no loss of kinetic energy. Then, as 
the lower ball starts to move upward, it collides with the upper ball that is still moving 
downwards. Assume again that the total energy of the two balls remains the same after 
the collision. How high will the upper ball rebound in the air? Assume m2 >> m1 . 

Hint: consider this collision as seen by an observer moving upward with the same speed 
as the ball 2 has after it collides with ground. What speed does ball 1 have in this 
reference frame after it collides with the ball 2? 

The two balls that are dropped from a height hi above the ground, one on top of the 
other. Ball 1 is on top and has mass m1 , and ball 2 is underneath and has mass m2 with 
m2 >> m1 . Assume that there is no loss of kinetic energy during all collisions. Ball 2 first 
collides with the ground and rebounds. Then, as ball 2`starts to move upward, it collides 
with the ball 1 which is still moving downwards. How high will ball 1 rebound in the air? 
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Solution: 

The system consists of the two balls and the earth. There are five special states for this 
motion shown in the figure above. 

Initial State: the balls are released from rest at a height hi above the ground. 

State A: the balls just reach the ground with speed va = 2ghi . 

State B: immediately before the collision of the balls collide but after ball 2 has collided 
with the ground and reversed direction with the same speed, va . Ball 1 is still moving 
down with speed va . 

State C: immediately after the collision of the balls. Because we are assuming that 
m2 >> m1 , ball 2 does not change it’s speed as a result fo the collision so it is still moving 
upward with speed va . As a result of the collision, Ball 1 moves upward with speed vb . 

State D: ball 1 reaches a maximum height hf = vb 
2 / 2g above the ground. 

Choice of Reference Frame: 

As indicated in the hint above, this collision is best analyzed from the reference frame of 
an observer moving upward with speed va , the speed of ball 2 just after it rebounded with 
the ground. In this frame immediately, before the collision, ball 1 is moving downward 
with a speed vb! that is twice the speed seen by an observer at rest on the ground (lab 
reference frame). 

va ! = 2va (18.5.40) 

The mass of ball 2 is much larger than the mass of ball 1, m2 >> m1 . This enables us to 
consider the collision (between States B and C) to be equivalent to ball 1 bouncing off a 
hard wall, while ball 2 experiences virtually no recoil. Hence ball 2 remains at rest in the 
reference frame moving upwards with speed va with respect to observer at rest on 
ground. Before the collision, ball 1 has speed va ! = 2va . Since there is no loss of kinetic 
energy during the collision, the result of the collision is that ball 1 changes direction but 
maintains the same speed, 

vb! = 2va . (18.5.41) 

However, according to an observer at rest on the ground, after the collision ball 1 is 
moving upwards with speed 
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vb = 2va + va = 3va . (18.5.42) 

While rebounding, the mechanical energy of the smaller superball is constant (we 
consider the smaller superball and the Earth as a system) hence between State C and State 
D, 

!K + !U = 0 . (18.5.43) 

The change in kinetic energy is 
1 

!K = " m1(3va )
2 . (18.5.44) 

2 

The change in potential energy is 
!U = m1 g hf . (18.5.45) 

So the condition that mechanical energy is constant (Eq. (18.5.43)) is now 

1 
! m1(3v1a )

2 + m1 g hf = 0 . (18.5.46) 
2 

We can rewrite Eq. (18.5.46) as 
1 m1 g hf = 9
2 

m1( va )
2 . (18.5.47) 

Recall that we can also use the fact that the mechanical energy doesn’t change between 
the Initial State and State A yielding an Eq. similar to Eq. (18.5.47), 

1 m1 g hi = m1( v )2 . (18.5.48) 
2 a 

Now substitute the expression for the kinetic energy in Eq. (18.5.48) into Eq. (18.5.47) 
yielding 

m1 g hf = 9 m1 g hi . (18.5.49) 

Thus ball 1 reaches a maximum height 
hf = 9 hi . (18.5.50) 
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