
  
   

 
        
        

 
           

        
 

   

 

Collision Theory
 
Challenge Problems Solutions
 

Problem 1 Estimate the energy loss in a completely inelastic collision between two 
identical cars that collide head-on traveling at highway speeds. 

Solution: Consider small cars going fast, m = 1000kg and v = " ! . The energy lost 30m s 1 

is the sum of the initial kinetic energies, 

1 2 !1 )2 62 mv = (1000kg )(30m s " # 10 J # 1MJ . (1.1)
2 



          
           
       

 

             
              

          
              

             
            

          
               

 
 
 

Problem 2 You just witnessed a karate master breaking a brick with his hand. Estimate 
the impulse necessary to break the brick. Estimate an upper limit on the force per area 
that the hand can safely endure without breaking the hand. 

Solution 

The motion is of course quite complicated. Taking the mass of the hand (should be the 
hand and some part of the forearm, at least) as 1kg and the initial speed of the hand to be 
10m s!1 , and assuming that all of the momentum of the hand is transferred to the brick " 
(probably not the case), the impulse that breaks the brick is about 10kg m s" !1 . If this " 
impulse, the change in the momentum of the hand, delivered over a time of roughly 
1ms = 10 !3 s , represents the largest force that the hand can withstand, that force is 

4 !2 4 2 !3 2roughly 10 kg " m s " = 10 N . Using an area of 10cm = 10 m gives a force per area 
7 2of 10 N m!2 . (The SI unit for force per area is the pascal, 1Pa = 1N m! ." " 



            
           

       
 

  
 

          
              
               

           
              

             
               

            
   

 
                     

                    
    

 
 

 
 
 

           
 

 
  

  

 
   

 

 
  

  

 
         

 

Problem 3 Suppose a golf ball is hurled at a heavy bowling ball initially at rest and 
bounces elastically from the bowling ball. After the collision, which ball has the greater 
momentum? Which has the greater kinetic energy? 

Solution: 

We shall first begin with an argument that is based on assuming that the bowling ball acts 
like a wall. The golf ball bounces back at nearly its incident speed, whereas the bowling 
ball hardly budges. Thus the change in momentum of the golf ball is nearly !2mv , and 
the bowling ball must gain momentum +2mv to conserve momentum. However, since 
the mass of the bowling ball is much larger than that of the golf ball, the bowling ball's 
speed and hence its kinetic energy are much smaller than those of the golf ball. Note that 
K = p2 / 2 m so if the momentum are equal the object that has the larger mass has the 
smaller kinetic energy. Thus the kinetic energy of the bowling ball is smaller than the 
golf ball . 

The golf ball has mass m1 and the bowling ball has mass m2 . The initial x -component 
of the velocity of the golf ball is v . The bowling ball is initially at rest ball, v = 0 . x1,0 x2,0 

Draw a momentum diagram. 

We can use our results from Course Notes Section 18.4, Eqs. 18.4.12 and 18.4.13: 

m1 ! m2 (3.1)v = v x1, f x1,0 m1 + m2 

and a similar calculation yields 

2 m1 . (3.2)v = v x2, f x1,0 m2 + m1 

The final kinetic energy of the golf ball is 



 
  

  

 
        

 

 
  

  

 
        

 
     
 
 
 
 

1 2 1 m1 )2= m1v =K1, f x1, f vx1,0 
2 (m1 ! m2 (3.3)

2 2 (m1 + m2 )2 

The final kinetic energy of the bowling ball is 

1 2 1 m1= m2v = vx1,0 
2 (2m1m2 ) (3.4)K2, f x2, f2 2 (m1 + m2 )2 

Because m2 >> m1 , (m1 ! m2 )2 ! m2
2 > 2m1m2 . Therefore 

. (3.5)K1, f > K2, f 



     
 

        
             

           
 

 
 

             
            

          
         

               
               

             
 

   

 
       

 

   

 
           

              
               

             
            

 
 

               
 
 

 
 

Problem 4 One Dimensional Collision 

A proton makes a head-on collision with an unknown particle at rest. The proton 
rebounds straight back with 4 / 9 of its initial kinetic energy. Find the ratio of the mass of 
the unknown particle to the mass of the proton, assuming that the collision is elastic. 

Solution: 

We choose as our system the proton and the unknown particle. Since we know that the 
collision is elastic the mechanical energy is constant. We also assume that there are no 
external forces acting so the momentum is constant. The collision is one dimensional so 
the constancy of momentum and energy provide two equations. In the statement of the 
problem the following quantities are not known: the mass of the proton m1 , the mass of 
the unknown particle m2 , the initial speed of the proton v1,0 , and the final speed of the 
unknown particle, v2, f . Since we are told that the final kinetic energy of the proton is 

1 2 4 4 ! 1 2 " K = m v = K = m v , (4.1)1, f 1,0 # 1 1, i $2 1 1, f 9 9 % 2 & 

we can determine the final speed of the proton 

2 v = v1, i . (4.2)1, f 3 

From the momentum condition we should be able to determine the final speed of the 
unknown particle, v2, f in terms of the initial speed of the proton v1,0 . Then the speeds 
of all the objects can be expressed in terms of the initial speed of the proton v1,0 . So the 
initial speed of the proton v1,0 will cancel out in the energy equation which will then 
yield the desired ratio of the mass of the unknown particle to the mass of the proton, 
m2 / m1 . 

In the figure below we depict the states of the system before and after the collision. 



        
 
   
 

       
 
  

   

 
               

     
 

   

 
        

 

   

 
               

 
 

   

 
    

 

   

 
            

   
 

   

 
                

 

   

 

The x-component of the momentum is constant so 

m v = !m v + m v . (4.3)1 1,0 1 1, f 2 2, f 

Now substitute Eq. (4.2) into Eq. (4.3) yielding 

2 m v = ! m v + m v . (4.4)1 1,0 1 1,0 2 2, f3 

We can solve Eq. (4.4) for the final speed of the unknown particle in terms of the masses 
and the initial speed of the proton, 

5m1 v1,0 . (4.5)v = 1, f 3m2 

The kinetic energy is constant in the collision, 

1 2 1 2 1 2m v = m v + m v . (4.6)1 1,0 1 1, f 2 2, f2 2 2 

We first substitute Eq. (4.1) for the final kinetic energy of the proton into Eq. (4.6) 
yielding 

1 2 4 1 2 1 2m v = m v + m v . (4.7)1 1,0 1 1,0 2 2, f2 9 2 2 

Eq. (4.7) simplifies to 

5 2 2m v = m v (4.8)1 1,0 2 2, f9 

Now substitute our expression for the final speed of the unknown particle (Eq. (4.5)) into 
Eq. (4.8) yielding 

25 2 ! 5m1 "
2 
25 m1 2m v = m v1,0 . (4.9)1 1,0 2 # v1,0 $ = 

9 3m 9 m% 2 & 2 

We can solve Eq. (4.9) for the ratio of the mass of the unknown particle and the proton 

m2 = 5 . (4.10)
m1 



               (Note: There are no known stable nuclei with mass equal to five time the proton mass.) 



 
     

 
          

           
            

              
              

 

 
 

 
 

         
            

        
 

        
 

            
        

 

   

 
             

             
        

     
 

Problem 5 Two-Dimensional Collision 

!An object with momentum p1 collides with a stationary particle. After the collision, two 
! !particles emerge, one with momentum p2 and the other with momentum p3 . The 

!direction of the vector p2 makes an angle !2 with respect to the direction of the vector 
! ! p1 and the direction of the vector p3 makes an angle !3 with respect to the direction of 

! ! !the vector p1 . In terms of p = p , ! and ! , what are the magnitudes p = p and 1 1 2 3 2 2 
! p3 = p3 ? 

Solutions: 

In this problem, we are given two directions and are asked to find two magnitudes in 
terms of the given angles and the magnitude of the initial momentum; two unknowns, 
two relations from equating initial and final momentum vectors. 

One “straightforward” method and one “tricky” method will be presented. 

!Take the x -direction to be the direction of the initial momentum p1 . Then, equating the 
components of momentum before and after the collision, 

p = p cos ! + p cos !1 2 2 3 3 (5.1)
0 = p sin ! " p sin ! .2 2 3 3 

The relations in (5.1) are two equations in the two unknowns p2 and p3 , and may be 
solved in a variety of ways. The method presented here is equivalent to Cramer’s Rule. 
Multiply the first expression in (5.1) by sin!3 and the second by cos!3 and add, to 
cancel the terms in p3 , yielding 



 

  

  

     
 

  
 

              
            

         
          

 
 

p1 sin!3 = p2 (cos!2 sin!3 + sin!2 cos!3) 

= p2 sin(!2 + !3) (5.2) 
sin!3p2 = p1 sin(!2 + !3) 

with a similar result for p3 . 

Alternate Solution: 

The “trick” is to use coordinate systems with one axis parallel to the direction of one of 
the final momenta, one of which is shown. Setting the x -direction to be along the 

!direction of p3 and considering y -components yields the result of (5.2) immediately, 
!with a similar result obtained by setting the x -direction to be along the direction of p2 . 



    
 

             
               

     
 

 
 

           
             

            

         
 

 
 

              
             

                
    

 
 

          
 

            
           

 
 

 
          

          
          

              
         

Problem 6 Exploding Hockey Puck 

A hockey player shoots a “trick” hockey puck along the ice towards the center of the goal 
from a position d directly in front of the goal. The initial speed of the puck is v0 and the 
puck has a mass m . 

Half way to the goal the puck explodes into two fragments. One piece of mass 
m = (3 5 )m comes back towards the player and passes 3d 8 to the side of the spot it 1 

was initially shot from with a speed v1, f = (5 12 )v . The other piece of the puck with 0 

mass m2 = (2 5 )m continues on towards the goal with a speed v2, f . 

Assume that there is no friction as the puck slides along the ice and that the mass of 
explosive in the puck is negligible. The goal of this problem is to find the distance, y , 
that the piece that continues towards the goal misses the center of the goal? Express your 
answer in terms of d . 

a)	 What concepts will you apply to this problem and briefly explain why. 

b)	 By what distance, y , does the piece that continues towards the goal miss the 
center of the goal? Express your answer in terms of d . 

Solutions: 

a)	 Since the puck explodes the mechanical energy of the system consisting ofn the 
puck is not constant (it increases due to the explosion, converting chemical energy 
into kinetic energy). However there are no external forces acting on the puck or 
the fragments of the puck since we assume the ice is frictionless. From the 
geometry fo the problem tan !2, f = y d/( / 2) and so we should be able to use the 



          
  

 
          

 
     
 
     
 

        
  

 

 
  

  

 

 
  

  

 
      

 

 
  

  

 

 
  

  

 
     

 

 
  

  

 

 
  

  

 
   

 
     
 

  

 
  

  

fact that the momentum is constant to determine tan ! and hence find the 2, f 

distance y . 

The equations for the constancy of the components of momentum are 

mv0 = !m1 )cos" 1, f + m2 )cos" 2, f (6.1)(v1, f (v2, f 

0 = m1 )sin!1, f " m2 )sin!2, f (6.2)(v1, f (v2, f 

Substitute the masses m = (3 5 )m , m = (2 5 )m , and v1, f = (5 12 )v into Eqs. (6.1) and 1 2 0 

(6.2), yielding 

v 0 = ! 
1 v 0 cos" 1, f + 

2 
cos" 2, f (6.3)v 2, f4 5 

0 = 
1 v0 sin!1, f " 

2 
sin!2, f (6.4)v2, f4 5 

From the geometry of the collision, 

4d / 8 4 
cos!1, f = = (6.5)

5d / 8 5 

3d / 8 3
sin!1, f = = (6.6)

5d / 8 5 

The Eqs. (6.3) and (6.4) become 

v 0 = ! 
1 v 0 + 

2 v 2, f cos" 2, f (6.7)
5 5 

0 = 
3 2 

sin" 2, f (6.8)v0 ! v2, f20 5 

Eq. (6.7) becomes 

3v 0 cos!2, f (6.9)= v 2, f 

Eq. (6.8) 
3 v0 = v2, f sin!2, f (6.10)
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Now divide Eq. (6.10) by Eq. (6.9) yielding 

tan!2, f = 
1 

(6.11)
8 

From the geometry of the problem 

tan!2, f = 
y 

(6.12)
d / 2 

So comparing Eqs. (6.11) and (6.12), we can solve for the distance y , 

y = d / 16 (6.13) 



      
 

             
             

        

              
             

      
         

        

     
         

                 

           

 
 

         
 

          
 

         
 

 
 

             
      

           
  

 
    

 

Problem 7 Two- Dimensional Particle Collision 

Particle 1 of mass m1 is initially moving in the positive x -direction (to the right in the 
figure) with a speed v1,0 and collides with a second particle 2 of mass m2 = m1 / 3 , which 
is initially moving in the opposite direction (to the left in the figure) with an unknown 
speed . Assume that the total external force acting on the particles is zero. You do v2,0 

not know whether or not the collision is elastic. After the collision particle 1 moves 
with a speed v1, f = v1,0 / 2 , at an angle !1, f = 90! with respect to the positive x -direction 
(downward in the figure). After the collision, particle 2 moves with an unknown 
speed v2, f , at an angle !2, f = 45! with respect to the positive x -direction (upward and to 

the right in the figure). In this problem you will find v2,0 and v2, f in terms of v1,0 . You 

also will determine whether or not the collision is elastic. Note: sin45! = cos45! = 2 / 2 . 

a) Find the speed v2,0 in terms of v1,0 .
 

b) Find the speed v2, f in terms of v1,0 .
 

c) Is the mechanical energy conserved in this collision? Justify your answer.
 

Solution: 

a) The problem statement specifies that there are no net external forces acting on the
 
system. Therefore, momentum is conserved.
 
In the above diagram, take the positive î -direction to be to the right and the positive ĵ -
direction to be upward.
 

To conserve momentum in the î -direction,
 



 

  

  

 
         

 
    

 

  

  

 
      

 
       

      
 

 
  

  

 
 

    

 
        

 

 

  

  

 
             

m1v1,0 ! m2v2, 0 = m2v2, f 

2 
2 (7.1)

v2, 0 ! =v1, 0 3 

where m2 = m1 / 3 and the known trigonometric relations have been used. 

To conserve momentum in the ĵ -direction, 

v2, f 

3 2 
, 

0 = m2v2, f 

2 
2 

! m1v1, f 

v2, f 

3 2 

(7.2)
v1,0 0 = ! ,
2 

where the same relations have been used. 

A simple substitution of the second expression in (7.2) into the second expression in (7.1) 
gives v1,0 / 2 , readily solved for = !v2,0 / 3 = v1, 0 

3 
= (7.3)v2, 0 v1,0 .2 

b) The second expression in (7.2) immediately gives v = (3/ 2 )v .2, f 1,0 

c) The initial and final kinetic energies are 

1 2 1 2 1 2 1 m1 ! 3 2 $ 7 2E0 = =m1v1,0 + m2v2,0 m1v1, 0 + v1,0 %& 
= m1v1,0 #2 2 2 2 3 " 2 8 

2 
3 

2 (7.4)
! $ 1 m1 ! $ 7 21 2 1 1 v1,0 E f = m1 + m2

2 = + m1 .m1 # &v1, f v2, f v1,0 = v1, 0 #2 2 2 2 2 3 " 2 %& 8" % 

The energies before and after the collision are the same; mechanical energy is conserved. 



     
 

                 
            

          
             

                
      

 
               

  
 

             
          

           
            

 
            

          
              

 
              
              

 
 

            
               

         
 

     
 

           
 
 
 

Problem 8 Pendulums and Collisions 

A simple pendulum consists of a bob of mass m1 that is suspended from a pivot by a 
string of negligible mass. The bob is pulled out and released from a height h0  as  
measured from the bob’s lowest point directly under the pivot point and then swings 
downward in a circular orbit (Figure 18.a). At the bottom of the swing, the bob collides 
with a block of mass m2 that is initially at rest on a frictionless table. Assume that there 
is no friction at the pivot point. 

a) What is the speed of the bob immediately before the collision at the bottom of the 
swing? 

b) Assume that the kinetic energy of the bob before the collision is equal to the kinetic 
energy of the bob and the block after the collision (the collision is elastic). Also assume 
that the bob and the block move in opposite directions but with the same speed after the 
collision (Figure b). What is the mass m2 of the block? 

c) Suppose the bob and block stick together after the collision due to some putty that is 
placed on the block. What is the speed of the combined system immediately after the 
collision? (Assume now that m2 is the combined mass of the block and putty.) 

d) What is the change in kinetic energy of the block and bob due to the collision in part 
c)? What is the ratio of the change in kinetic energy to the kinetic energy before the 
collision? 

e) After the collision in part d), the bob and block move together in circular motion. What 
is the height hf above the low point of the bob’s swing when they both first come to rest 
after the collision (Figure c)? Ignore any air resistance. 

(a) (b) (c) 



 
 

          
      

 

   

 
              

 
 

    
 

            
            

         
          

 
     
 

         
             

      
 
   
 
 

            
 

   

 
            

 
      

 

 
  

  

 
      

 

Solution: 

a) The mechanical energy of the bob is constant between when it is released and the 
bottom of the swing. We can use 

1 2m v = m g h (8.1)1 1,0 1 02 

to calculate the speed of the bob at the low point of the swing just before the collision, 

v = 2 g h . (8.2)1,0 0 

b) Consider the bob and the block as the system. Although tension in the string and the 
gravitation force are now acting as external forces, both are particular to the motion of the 
bob and block during the collision. If we additionally assume that the collision is nearly 
instantaneous, then the momentum is constant in the direction of the bob’s motion, 

(8.3)m1 v1,0 = m2 v2, f ! m1 v1, f , 

where v2, f is the speed of the block immediately after the collision. 
Since the bob and block are given to have the same speeds after the collision, define 

and rewrite Eq. (8.3) as v f ! v2, f = v1, f 

m v 1,0 = (m2 ! m1 )v f . (8.4)1 

Solve Eq. (8.4) for the speed of the bob and block after the collision, 

m 
f 1,0 

1 (8.5)v = v 
m2 ! m1 

(at this point we see explicitly what we might have guessed, that m2 > m1 ). 

The collision is given to be elastic, 

1 m1
2 = 

1 
(m1 + m2 )v2 

f . (8.6)v1, 0 2 2 

Substituting Eq. (8.5) into Eq. (8.6) yields 



 
  

  

 
   

         
  

 
     
 

       
 
     
 

    
 
     
 

   
 

   

 
            

            
           

 
     
 

         
 

   

 
   

 

   

 
             

 
 

2
" m %
2 = (
 + m2 )


2 .
 (8.7)

#$
 !
 '
 &
 

1 
1 1,0 1 1,0 

Canceling the common factor of m v2 from both sides of Eq. (8.7) and rearranging 1 1,0 

gives 

(m2 ! m1)2 = (m1 + m2 ) m1 . (8.8) 

Expanding the square and canceling m1
2 yields 

v

m2 (m2 ! 3 m1) = 0 , (8.9) 

m2 1 

and so the block has mass 

m

m2 = 3m1 (8.10) 

m

and the final speed is 

vm

v1,0 = 
g h 0 . (8.11)v f = 

2 2 

c) The bob and block stick together and move with a speed v!f after the collision. The 
external forces are still perpendicular to the motion, and if we assume that the collision 
time is negligible, then the momentum in the direction of the motion is constant, 

m1 = (m1 + m2 )v!f (8.12)v1, 0 

The speed immediately after the collision is (recalling that m2 = 3m1 ) 

m v 11 1,0 v1,0 . (8.13)
m1 + m2 4 

v!f = = 

Using Eq. (8.2) in Eq. (8.13) yields 

1 1 v = v = . (8.14)!f 1,0 4 4 
0 

02 
8 
gh gh = 

d) The change in kinetic energy of the bob and block due to the collision in part c) is 
given by 



 
  

  

 
      

 

 

  

  

 
           

         
 
  

   

 
             

 

 
  

  

 
             

    
 

           
       

        
    

 

   

   

 

1 2 1 2= (m1 + m2 )v#f " m1 . (8.15)!K = Kafter " Kbefore v1,0 2 2 

Using Eq. (8.13), (8.2) and (8.13) in Eq. (8.15), 

1 gh0 1
!K = (4m1) " m12gh02 8 2 (8.16)

3 
= " m1gh0.

4 

The kinetic energy before the collision was m gh , and so the ratio of the change in 1 0

kinetic energy to the kinetic energy before the collision is 

!K = "3/ 4 . (8.17)
Kbefore 

Note that this agrees with our result in worked example 18.5.2, with m2 = 3m1 

!K m2 3 . (8.18)= " = " 
4Kbefore m1 + m2 

for completely inelastic collisions when the target object (the block of mass m2 in this 
example) is initially stationary. 

e) After the collision, the tension is acting on the bob-block system but the tension force 
is perpendicular to the motion so does no work on the bob-block system and the 
mechanical energy after the collision is the same as when the bob-block combination 
reaches its highest point, 

K = (m + m )g h !after 1 2 f 

m gh (8.19)
1 0 = 4m g h ! 
4 1 f 

hh! = 0 . (8.20)f 16 
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