
  

 

System of Particles and of Conservation of Momentum 
 
Challenge Problems Solutions 
 

 
Problem 1 Center of Mass of the Earth-Sun System  
 
The  mean distance  from  the  earth to the  sun is  r   11 

e,s = 1.49 ×10 m . The  mass  of  the  earth   
is m = 5.98 × 1024 kg  and the  mass  of  the  sun is  m = 1.99 × 1030 

  e   s kg . The  mean radius  of  

the  earth is    r e = 6.37 × 106 m . The  mean radius  of  the  sun is  r = 6.96 ×   108 
s m . Where  is  

the  location of  the  center of  mass  of  the  earth-sun system?  Is  it  inside  the  sun’s  radius  or 
outside?  
 
 
Solution:  
 
Choose  an origin at  the  center of  the  sun and a  unit  vector î  pointing towards  the  earth, 
then r

 
s = 0 . The center of mass of the earth-sun system is given by  

 1 i=N  1   m r m r 
 Rcm = ∑ m  

i ri = (m r e e e e, s ˆ
m  e e  + ms rs ) = = i  (0.1)  

i=1 sys me + ms me + ms me + ms 
 

 (5.98 ×10 24 kg)(1.49 ×1011  m)  R cm = î  = 4.48 ×10 5 m î  (0.2)  
(5.98 ×10 24 kg +1.99 ×10 30 kg) 

 
The sun’s mean radius is  r = 6.96 ×   s 108 m so the center of mass of the earth-sun system  
lies well within the sun.  
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 m r1 1(t) + m2 r
 (t)

R
  2 
 cm (t) = . 
+     m1 m2 

 
where       r1(t)  is the position of the center of mass of the rod and      r2 (t)  is the position of the  
particle. The center of mass of the rod at    t = 0  is given by the expression  
 

r (t =     1 0) = (L / 2) ĵ .  
 
At time    t = 0 , the particle is at the origin so r (t =     2 0) = 0 . So the center of mass of the  
system at time    t = 0  is   
 

 M (L / 2) ĵR cm (t = 0) = = (L / 4) ĵ . 
    2 M 

 
The velocity of the center of mass is given by  
 

 m v (t) + m v
V
  1 1 2 2 (t) 
 cm (t) = . 

m      1 + m2 

 

Problem 2 Center of Mass of the Particle-Rod System  
 
A slender uniform rod of length  L  and mass   M  rests along the y-axis on a frictionless, 
horizontal table. A particle of equal mass    M  is moving along the x-axis at a speed   V0 . At   

 t  0  the particle strikes the end of the rod and sticks to it. Find the position R 
 

 =     cm (t)  and 
velocity 

 
    V cm (t)  of the center of mass of the system as a function of time.  

 

Solution: The center of mass of the system of rod and particle is given by the expression 

2  



  

The rod is at rest at    t = 0  and so     v
 

1(t = 0) = 0 
 

. At time    t = 0 , the particle is moving in 

the positive x-direction and the velocity is given by v   ˆ
    2 (t = 0) =V0i . So the velocity of the  

center of mass of the system at time    t = 0  is given by  
 

 M V î
V cm (t) = 0 = (V ˆ
   2 M 0 / 2)i .  
 

 
Because there are no external forces acting on the system, the velocity of the center of  
mass of the system is constant and the position of the center of mass of the system moves  
according to  
 

R 
  

        cm (t) = R cm (t = 0) + V cm t = (L / 4) ĵ + (V / 2) t ˆ0 i .  
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Problem 3: Center  of Mass  of a Rod  A  thin non-uniform  rod has  length  L  and total  
mass  M  and the  linear mass  density varies  with the  distance  x  from  the  left  end 
according to  
 

λ
 λ = 0 x   

  L 
 
where  λ0  is  a  constant  and has  SI units  [kg ⋅m-1 ] . Find λ0  and the  position of  the  center 
of mass with respect to the left end of the rod.  
 
 
Solution:  Choose  a  coordinate  system  with the  rod aligned along the x-axis  and origin 
located at  the  left  end of  the  rod. Choose  an infinitesimal  mass  element   dm  located a  
distance   xʹ′ . Let the length of the mass element be   dxʹ′ .  
 

Then  
λ

 dm = λ(xʹ′)dxʹ′ = λ = 0 xʹ′dxʹ′ .  (0.3)  
  L 

 
The total mass is found by integrating the mass element over the length of the rod  
 

x = L λ x = L λ x ʹ′= L 
0 λ λ

 M = ∫ λ(xʹ′)dxʹ′ = ∫ xʹ′dxʹ′ = 0 xʹ′2 = 0 (L2 − 0) = 0 L  (0.4)  
  L 2L x ʹ′=0 x ʹ′=0 x ʹ′=0 2L 2

 
Therefore   

2 M  λ = 
 

0  (0.5)  
 L 

 
The center of mass is again found by integration  
 


 1
  1 x λ x 2 x
R
 cm =
 ∫
 r dm =
 λ(xʹ′)x xʹ′ ˆ 0 2 ˆ 2 ˆ∫ ʹ′d i = ∫ xʹ′ dxʹ′ i = 2 ∫ xʹ′ dxʹ′ i

M
 body M
  x ʹ′ =0 ML
 x ʹ′=0 L x ʹ′=0 (0.6)
  

 2 x ʹ′= L 3 2 2 R
 =
 xʹ′ ˆ

m i = 3  ˆ ˆ
   c 2 (L − 0) i = L i
 3L x ʹ′=0 3L2 3
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Problem 4 Two Acrobats  
 
An acrobat  of  mass   mA  jumps  upwards  off  a  trampoline  with an initial  y-component  of  
the  velocity v  y ,0 ≡ v0 . At  a  height    h , the  acrobat  grabs  a  clown of  mass  m . Assume  that    0 B 

the time the acrobat takes to grab the clown is negligibly small.  

How high do the acrobat and clown rise? How high would the acrobat go if the acrobat  
and the clown have the same mass?  
 
 
Solution:  
 
Choose  the  acrobat  and the  clown as  the  system. The  first  important  observation to make  
is  that  there  is  a  collision between the  acrobat  and the  clown. This  collision is  completely 
inelastic  in that  the  two bodies  collide  and “stick’ together after the  collision. The  details  
of  the  collision are  determined by the  internal  forces  in the  system. Since  this  is  a  one- 
dimensional  motion, let’s  choose  an origin at  the  trampoline  and the  positive  y-axis  
upwards.  
 
There are two important states  to identify in this problem.  
 
State  1:   Immediately before  the  collision. Acrobat  A  just  arrives  at  platform  located at  
y = y = h  

  ˆ
  1, A 2, B 0  with velocity v1, A = v1, A j , immediately before  grabbing Clown B. Denote  

this time by   t1 .  
 
The collision lasts a time   Δtcol . During this time interval, acrobat A grabs Clown B.  
 
State  2:  Immediately after the  collision. At  the  end of  the  interval, the  two acrobats  rise  
together with velocity v 2 = v ˆ2j  . Denote  the  time  at  the  end of  this  interval  by 

  t = t + 1 Δt  2 col . The key assumption is that the collision time is instantaneous    Δtcol ≅ 0 .  
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The  impulse  delivered by the  external  gravitational  force  is  zero during the  collision 
because  the  collision was  assumed to be  instantaneous. Therefore  during the  collision, the  
total  momentum  of  the  system  is  constant. If  the  collision lasts  a  significant  length of  
time, there  would be  some  slowing down of  the  acrobat  A  during the  collision. then we  
need to calculate  this  effect. However by assuming the  collision is  instantaneous, we  can 
ignore this slowing down, and therefore the change in the system momentum is zero.  
 
 
From  one-dimensional  kinematics, the  y-component  of  the  velocity of  the  acrobat  A  at  
the    t1  is given by  
 

 (v )  2  1/ 2 

  1, A y = (v0 − 2gh0 ) .  (0.7)  

State 1 to State 2:  
 
Momentum in state 1 (immediately before collision) is only due to acrobat A  
 

 p
 

1, A = m (v 2 1/ 2 
A 1, A ) y j = mA (v0 − 2gh0 ) j .  (0.8)  

 
The momentum in state 2 (immediately after the collision) is   
 

 p (m
 

2 = A + mB )v2, y j .  (0.9)  
 
Since momentum is unchanged,  
 

 m (v2
 

  1
A 0 − 2gh0 ) 

/ 2 j = (mA + mB  )v2, y j .  (0.10)  
 
The y-component of the velocity of the acrobat A at the    t2  is given by  
 

m
 . v = A 2  1/ 2 

2, y (v − 2gh )  (0.11)  
  m + m 0 0 

A B 

 
Again from  one-dimensional  kinematics, the  final  height  of  the  acrobat  and the  clown is  
given by  

1
 h  2  f = (v

2g 2, y ) + h0 . (0.12)  
  

 
We  can use  our above  result  for the  y-component  of  the  velocity immediately after the  
collision to find the  final  height  in terms  of  the  initial  y-component  of  the  velocity of  
acrobat A and the initial height of clown B,  
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1 m 2 

 h = A (v2  gh ) + f − 2 h .  (0.13)  
  2g (m + m )2 0 0 0 

A B 

 
When the  mass  of  the  acrobat  is  equal  to the  mass  of  the  clown   mA = mB , the  mass  ratio 

m 2 1
becomes  A ≅  and so the height becomes  

  (mA + m )2 
B 4

 
1 m 2 2 

 h = A (v2 1 1 v
f − 2gh ) + h ≅ (v2 − 2gh ) + h = ( 0 + 3h ) .  (0.14)  

2g (m + mB )
2 0 0 0 

  A 8g 0 0 0 4 2g 0
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Problem 5 Recoil  
 
A  small  cube  of  mass  m1  slides  down a  circular track of  radius  R  cut  into a  large  block 
of  mass  m2  as  shown in the  figure  below. The  large  block rests  on a  table, and both 
blocks  move  without  friction. The  blocks  are  initially at  rest, and m1  starts  from  the  top 
of the path. Find the velocity v1  of the cube as it leaves the block.  

Solution: If  we  consider the  earth-cube-block system, there  are  no external  forces  in the  
horizontal  direction so the  horizontal  component  of  momentum  is  constant, px , i = px, f . 
We  can ignore  the  horizontal  motion of  the  earth and so the  momentum  of  the  block and 
cube  is  constant. Initially the  system  is  at  rest, so the  final  horizontal  component  of  the  
momentum  is  zero. Also energy is  constant  Ei = Ef  since  there  is  no external  work (the  
gravitational  force  is  an internal  force  and the  work done  is  describable  by a  change  in 
potential energy. The initial and final states are shown in the figure below.  

The condition that momentum in the x-direction is constant becomes  
 

 0 = m1v 1 , f − m2 v2 , f .  (0.15)  
 
We can solve Eq. (0.15) for the final velocity of the block ,  
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m v 
 v2 

1 1, f
, f = .  (0.16)  

m2 
 
The condition that the energy is constant becomes  
 

 U i = U f + K f .  (0.17)  
 
If  we  choose  as  the  zero point  for potential  energy the  height  that  the  cube  leaves  the  
block, then U f = 0 , and Eq. (0.17) becomes  
 

1 1 m1 gR = m1v 
2  2 

2 1, f 
+ m
2 2 v 2, f .  (0.18)  

 
We can now substitute Eq. (0.16) into Eq. (0.18) to find that  
 

1
2 

 2 1 ⎛ m1v1 , f ⎞ 1 2 ⎛ m ⎞ m 1 
1  gR = m1v + m2    = m v  

1, f ⎜ ⎟ 1 ⎜1+ ⎟ .  (0.19)  
2 2 ⎝ m 1, f 

2  ⎠ 2 ⎝ m2 ⎠ 
 
Thus we can solve Eq. (0.19) for the velocity of the cube  
 

 2 gRm2  v =  ˆ
1, f i .  (0.20)  

(m 2  + m1  ) 
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Problem 6 People jumping off a flatcar 

N  people, each of mass mp , stand on a railway flatcar of mass mc . They jump off one 
end of the flatcar with velocity u  relative to the car. The car rolls in the opposite 
direction without friction. 

a) What is the final velocity of the car if all the people jump at the same time? 

b) What is the final velocity of the car if the people jump off one at a time? 

c) Does case a) or b) yield the largest final velocity of the flat car. 

Solution: 

We begin by choosing a reference frame at rest with respect to the ground and identify 
our system as the flatcar and all the people. Since there are no external forces in the 
horizontal direction, the horizontal component of the momentum of the system is 
constant 

px i , = px, f . (0.21) 

We can use this fact to solve for the final speed v f of the flatcar when all the people 
jump off together. We need to be careful to use the fact that the speed of each jumper 
relative to ground is given by u − v f . 

We take as our initial state the car and people at rest. The final state is immediately after 
all the people have jumped off. The schematic momentum diagram below shows these 
states. 

Then the initial x-component of the momentum is 

px i , = 0 . (0.22) 

The final x-component of the momentum is 
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 p x, f = −mcv f + Nm p (u − v f ) .  (0.23)  
 
Substituting Eq. (0.22) and Eq. (0.23) into Eq. (0.21) yields  
 
 

 0 = −mcv f + Nm p (u − v f ) .  (0.24)  
 
We can solve Eq. (0.24) for the final velocity of the car,  

Nm 
 v p

f = u .  (0.25)  
Nm p + mc 

 
(b) if  the  people  jump off  one  at  a  time, we  need to be  more  careful. Again the  
momentum of the system is constant but we have N jumps.   
 

 
 
Before  the  first  jump, the  momentum  is  still  zero. Immediately after the  first  person 
jumped, the x-component of the momentum is  
 

 px, f ,1 = −(( N −1) mp + mc )v f ,1 + mp (u − v f ,1 ) .  (0.26)  
 
Since the x-component of the momentum is constant we have that  
 

 0 = −(( N −1) mp + mc )v f ,1 + mp (u − v f ,1 ) .  (0.27)  
 
We can solve this equation for the speed of the car after the first jump and find that  
 

m 
 v p

f ,1 = u .  (0.28)  
Nm p + mc 

 
Note that this is  1/ N  of the speed found when the people all jumped at once (Eq. (0.25).  
 
Now let’s consider the second jump.  
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The x-component of the momentum before the jump is 
 

 px,i,2 = −((N −1)mp +mc )v f ,1  (0.29) 
 
The x-component of the momentum immediately after the second person jumped is 
 

 px, f ,2 = −((N − 2)mp +mc )v f ,2 +mp (u − v f ,2 ) . (0.30) 
 
Again applying the fact that the x-component of the momentum is constant yields 
 

 −((N −1)mp +mc )v f ,1 = −((N − 2)mp +mc )v f ,2 +mp (u − v f ,2 ) . (0.31) 
 

We can rewrite this equation as 
 

 −((N −1)mp +mc )v f ,1 = −((N −1)mp +mc )v f ,2 +mpu . (0.32) 
 
After dividing through by ((N −1)mp +mc )  and rearranging Eq. (0.32) becomes 
 

m
 v f ,2 = v f ,1 +

p u . (0.33) 
(N −1)mp +mc

 
Substituting Eq. (0.28) into Eq. (0.33) yields the speed of the car immediately after the 
second person jumped off 
 

m m
 v p p

f ,2 = u + u . (0.34) 
Nmp +mc (N −1)mp +mc

 
Notice that the second term on the right hand side of Eq. (0.33) is larger than the first 

2term on the right hand side, so the speed is now larger than v f ,2 > 2v f ,1 = v
N f . 
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By induction, the speed after the jth person jumped off is  
 

m
 p m m

vf , j = u + p u + ⋅ ⋅ ⋅+ p u . (0.35) 
Nmp +mc (N −1)mp +mc (N − ( j −1))mp +mc

 
Hence the speed after the last person (the Nth) person jumped off is 
 

m
 v , = p m m

f N u + p u + ⋅ ⋅ ⋅+ p u . (0.36) 
Nmp +mc (N −1)mp +mc mp +mc

 
(c) To compare the answers to the previous two parts, note that each term in 

Eq.(0.36) is larger than the previous one, so we can conclude that 
 

Nm
 v p

f ,N > v f = u . (0.37) 
Nmp +mc

 
Without doing the calculation, we can alternatively use a proof by contradiction to 
understand why jumping one at a time produces a larger final velocity for the flatcar.  
Consider case A to be the everybody-jump-at-once case, and case B the one-at-a-time 
case. Let v f  and v f ,N  be the final speed of the flatcar in cases A and B, respectively.  
Then, since each jumper is specified to have a speed u relative to the flatcar's speed 
immediately after his jump, in case A every jumper ends with an x-component of  the 
velocity  u − v f .  Now suppose that v f > v f ,N .  Then each jumper in case B has a final x-
component of velocity greater than or equal  to u − v f ,N , and hence larger than the x-
component of the jumpers in case A, which is u − v f .  Thus the total x-component of the 
momentum of the jumpers in case B is greater than in case A, so the magnitude of x-
component the recoil momentum of the flatcar must also be greater in case B (we need to 
take the magnitude of the x-component of the recoil momentum because the recoil is in 
the negative x-direction and so the x-component is negative).  Thus we have contradicted 
our hypothesis.  Similarly, if we suppose that v f = v f ,N , we could conclude that all the 
jumpers except the last in case B would have an x-component of  momentum larger than 
each jumper in case A, so again we would have a contradiction.  Thus, v f ,N > v f  is the 
only possibility. 
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Problem 7 Space Collision 
 
A projectile of mass  m  is fired vertically from the earth’s surface with an initial speed 
that is equal to the escape velocity. The radius of the earth is  Re , the mass of the earth is 

 Me , and the universal gravitational constant is  G . Express your answers to the questions 
below in terms of M  G e ,  R ,  me , and  as needed. 
 

 
 
a) What is the initial speed of the projectile when it is launched from the surface of the 
earth?  
 
When the projectile is a distance   2Re  from the center of the earth, it collides with a 
satellite of mass  m  that is orbiting the earth in a circular orbit. After the collision the two 
objects stick together. Assume that the collision is instantaneous. 
 

 
b) What is the speed of the projectile, just before the collision, when it is a distance   2Re  
from the center of the earth? 
 
c) What is the speed of the satellite, just before the collision, when it is in a circular orbit 
of radius  2Re ? 
 
d) What is the speed of projectile and satellite immediately after the collision?
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Solution 
 
The escape speed of the projectile occurs when the energy of the projectile-earth system 
is zero, so conservation of energy can be expressed as 
 

1 m v2
Gmpme

2 p p,esc − = 0  
  Re

 
We can solve this expression for the escape speed is 
 

2Gm
v e

p,esc =  
R  e

 
When the satellite reaches a height   r = 2Re , the energy is 
 

1 Gm m
m v2 − p e

2 p p = 0 . 
  2Re

 
Therefore the speed at a height   r = 2Re  is 
 

Gm
v = e

p  
R e

 
c) Newton’s Second Law for the satellite becomes 
 

Gm 2
sme msv= s

2  
  (2Re ) 2Re

 
So the velocity of the satellite is 
 

Gm
vs =

e  
2R  e

 
a) Momentum is constant during the instantaneous collision. Choose horizontal and 
vertical directions and θ  to be the angle with respect to the horizontal that the combined 
objects emerge after the collision.  
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If the masses are equal mp = ms = m . Then the momentum equations become  
 

vertical : mvp = 2mv f sinθ  
  

horizontal : mvs = 2mv f cosθ  
  

 
Square and add these two equations yields 
 

m2 (v 2
s + v 2

p ) = 4m2v 2

  f  
 
which we can solve for the final speed 
 

1v = (v 2 + v 2 )1/ 2
f s p . 

  2
 
Substituting for the two speeds yields 
 

1/ 2
1 ⎛ ⎛Gm ⎞ ⎛

e Gm ⎞ ⎞ 3Gm
v f =

e e
⎜ +⎜ ⎟ ⎜ ⎟ ⎟ = . 

2 ⎝ ⎝ 2Re ⎠ ⎝ R
  e ⎠ ⎠ 8Re
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Problem 8 Spring and Carts  
 
Cart B of mass  m  is initially moving with speed vB,0  to the right, as shown below.  It   
collides and sticks to a second identical cart A of mass  m  that is initially at rest.  

 

 
 

a) What is the speed of the two carts immediately after the collision? Express your 
answers in terms of  m  and vB,0  as needed.   

 

 
 
b) How far does the spring compress when the spring and carts first come to a stop? 

Express your answers in terms of m ,  k , and vB,0  as needed. 
  

 
c) How long does it take the right end of cart A to first return to the position  x = 0 ? 

Express your answers in terms of m ,  k , and v
  B,0  as needed. 

 
d) Set   t = 0  to be the time immediately after the collision. Write down an expression 

for the position of the right end of cart A as a function of time for the interval 
immediately after the collision until the right end of cart A first returns to the 
position  x = 0 ? Express your answers in terms of m ,  k , and vB,0  as needed.    

 
 
Solution: The system consisting of the two carts has no external forces acting on it so 
momentum is constant. Therefore 
 

 mBvB,0 = (mA + mB )va = 2mBva , (0.38)   
 
so 
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1
 va = vB,0  (0.39) 

  2
 
b) There is no external work done on the carts-spring system during compression so the 
energy is constant, hence 
 

1 1
 (2m)v 2

a = kx2

  2 2 max  (0.40) 

 
Thus  
 

2m 2m v
 x B,0

max = va = . (0.41) 
  k k 2

 
 
c) It takes the block half a period to return to the position x = 0 . The angular frequency is 
 

k
 ω =  (0.42) 

2m
 
The period is 
 
 

2T π 2m
 = = 2π  (0.43) 

ω k
 
So the block returns to x = 0  at time  
 

T 2m
 t π

1 = = = π  (0.44) 
2 ω k

 
d) The equation for the position is generally 
 

   x(t) = C cos(ωt) + Dsin(ωt)  (0.45) 
 
At t = 0 ,  

   x(t = 0) = 0 = C . (0.46) 
 
The x-component of the velocity is 
 

dx(t)
 vx (t) = = −ωC sin(ωt) +ωDcos(ωt)  (0.47) 

  dt
At t = 0 ,  
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1

 vx (t = 0) = va = vB,0 =ωD . (0.48) 
  2

 
Therefore substituting Eq. (0.42) into Eq. (0.48) and solving for D yields 
 

1 1 2m
 D = vB,0 = v . (0.49) 

  2ω 2 k B,0

 
So substituting Eq. (0.46) and Eq. (0.49) into Eq. (0.45) yields 
 

1 2m ⎛ k ⎞
 x(t) = vB,0 sin⎜ t⎟  (0.50) 

2 k
  ⎝ 2m ⎠
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