
  
    

  
 

  
 

                
              

          
          

         
 

 
 
 
 

   
 

           
           

              

                

              

               
           

 

 

 
                

            
          

Rotation and Translation Dynamics
 
Challenge Problems
 

Problem 1: 

A drum A of mass m and radius R is suspended from a drum B also of mass m and 
radius R , which is free to rotate about its axis. The suspension is in the form of a 
massless metal tape wound around the outside of each drum, and free to unwind. Gravity 
is directed downwards. Both drums are initially at rest. Find the initial acceleration of 
drum A , assuming that it moves straight down. 

Problem 1 Solution: 

The key to solving this problem is to determine the relation between the three kinematic 
quantities ! A , !B and aA , the angular accelerations of the two drums and the linear 
acceleration of drum A . One way to do this is to introduce the auxiliary variable z for 

2d z the length of the tape that is unwound from the upper drum. Then, !BR = 2 . The 
dt 
dz linear velocity vA may then be expressed as the sum of two terms, the rate at which 
dt 

the tape is unwinding from the upper drum and the rate !AR at which the falling drum is 
moving relative to the lower end of the tape. Taking derivatives, we obtain 

2d z a = +! R = ! R +! R .A 2 A B Adt 

Denote the tension in the tape as (what else) T . The net torque on the upper drum about 
its center is then ! B = TR , directed clockwise in the figure, and the net torque on the 
falling drum about its center is also ! A = TR , also directed clockwise. Thus, 



        
          

         
    

 

  

 

     

 
    

 
 

 
  

 
 

 
     

 

 

 
    

 

 

 
     

 

 

 
             

            

!B = TR / I = 2T / MR , ! A = TR / I = 2T / MR . Where we have assumed that the moment 
of inertia of the drum and unwinding tape is I = (1/ 2) MR 2 . Newton’s Second Law, 
applied to the falling drum, with the positive direction downward, is Mg !T = Ma A . We 
now have five equations, 

2 2d z d z 2T 2T! R = , a = +! R, ! = , ! = , Mg "T = Ma ,B 2 A 2 A Bdt dt MR A MR A 

2d z in the five unknowns ! , ! , , and T .A B aA 2dt 

It’s easy to see that 

! A = !B . 

Therefore 

aA = !BR +! AR = 2! AR . 

The tension in the tape is then 

! AMR a MR A Ma AT = = = 
2 4R 4 

Newton’s Second Law then becomes 

Ma Mg ! A = Ma A . 4 

Therefore solving for the acceleration yields 

4 aA = g
5 

This result is certainly plausible. We expect aA < g , and we also expect that with both 
drums free to rotate, the acceleration will be almost but not quite g . 



         
 

                   
         

            
          

 

 
 

           
 

             
    

 
          

       
    

 
 

   
 
                               

  
 

                                          
 

   
 
   

  
 

Problem 2: Yo-Yo rolling on a plane Rotation and Translation 

A Yo-Yo of mass m has an axle of radius b and a spool of radius R . It’s moment of 
inertia about an axis passing through the center of the Yo-Yo can be approximated by 
I0 = (1 / 2)mR2 . The Yo-Yo is placed upright on a table and the string is pulled with a 

! 
horizontal force F to the right as shown in the figure. 

The coefficient of static friction between the Yo-Yo and the table is µs . 

a)	 Which way will the Yo-Yo rotate if the string is pulled very gently? If the string is 
jerked hard, which way will the Yo-Yo rotate? 

! 
b)	 What is the maximum magnitude of the pulling force , F , for which the Yo-Yo 

will roll without slipping? 

Problem 2 Solutions: 

The force of friction acting opposite to the applied force is shown in the 
figure below. 

Torque equation: 

! = I" = Rf # bF	 (2.1) 
Force equation: 



   
 

      
 
   
 

              
  

 
     

 

   

 
  

 

   

 
     

 

   

  
 

   

 
    

 

   

  
 

            
            

         
  

 
         

         
 

 

F ! f = ma (2.2) 

For rolling without slipping motion along the floor, 

a = +R! (2.3) 

(Note that the positive sign is a result of our two choices of sign convention for positive 
rotation and linear acceleration.) 

From (1) and (3), 

Rf ! bF = I" = 
Ia 

R
 
=
 
1
2

mR2 a 

R 
= 
1
2

maR	 (2.4) 

implies that 

bf ! F = 
R
 

1
2

ma	 (2.5) 

From (2) and (4), 

" b % 3F 1 ! = 
2 
ma	 (2.6)' #$ R& 

implies that 

2 F " b %1 ! (2.7)' #$
a = 

3 m R& 

From (2) and (5), 

F ! 2b $f = #1 + (2.8)%&3 " R 

The frictional force, f , is maximum when b = R , and is given by f = F (i.e it equals the 
applied force). We also know that the maximum possible value of f is given by, 
f = µsmg . So, our assumption of pure clockwise rotation breaks down for F > µ mg s 

and slipping occurs. 

a)	 If the string is pulled very gently, our assumption of pure clockwise rotation 
holds. And, the Yo-Yo rotates in the forward (clockwise) direction without any 
slipping. 



         
       

      
  
 

        
 

   

 

   

 
 
 
 

If the string is jerked hard, our assumption of pure rotation in the clockwise 
direction fails, and slippage occurs. The Yo-Yo rotates in the anti-clockwise 
direction but still moves forward (by slipping). 

b) From the results above Eq. (2.8) 

3 f 

& 

$
%

$
%

& 

F =
 (2.9)
 

(2.10)
 

2b1 +!
#"
 R
 

3 fmax 3µmg 
= 

2b$
%

!1 +& R"

Fmax =
 
2b1 +
 
R
 #


!
#"




  
 

              
                
              

              
              

           
              

                
    

 

 
 

          
       

         
   

 
                

          
      

 
                 

            
   

  
 

   
 

              
         

              
        

                  
            

         

Problem 3 

A hollow cylinder of outer radius R and mass M with moment of inertia about the center 
of mass I cm = M R2 starts from rest and moves down an incline tilted at an angle ! from 
the horizontal. The center of mass of the cylinder has dropped a vertical distance h when 
it reaches the bottom of the incline. Let g denote the gravitational constant. The 
coefficient of static friction between the cylinder and the surface is µs . The cylinder rolls 
without slipping down the incline. The goal of this problem is to find an expression for 
the smallest possible value of µs such that the cylinder rolls without slipping down the 
incline plane and the velocity of the center of mass of the cylinder when it reaches the 
bottom of the incline. 

a)	 Write down a plan for solving this problem. Make sure you clearly state which 
concepts you plan to use to calculate any relevant physical quantities. Also clearly 
state any assumptions you make. Be sure you include any diagrams or sketches 
that you plan to use. 

b)	 What is the minimum value for the coefficient of static friction µs such that the 
cylinder rolls without slipping down the incline plane? Express your answer in 
terms of M , R , g , ! and h as needed. 

c)	 What is the magnitude of the velocity of the center of mass of the cylinder when it 
reaches the bottom of the incline? Express your answer in terms of M , R , g , ! 
and h as needed. 

Problem 3 Solutions: 

a) The two parts of the problem are seen to be distinct; find the minimum value of µs , 
and from the resulting acceleration find the speed of the cylinder when it reaches the 
bottom of the incline. To find the minimum value of µs , we will need to know 
something about the forces and torques, specifically the relation between the friction 
force on the normal force; that is, the components of the contact force. As a result of this 
determination, we will find the acceleration and hence the speed at the bottom of the 
incline. A figure showing the forces is shown below. 



 

 
                           

           
   

 

 
  

  

 
          
            

 
             

        
 
 

    
 

            
          

    
 

 
  

  

 
  

  

 
               

  

 
 

  

 

b) With the coordinates system shown, Newton’s Second Law, applied in the x - and y -
directions in turn, yields 

Mg sin! " f = Ma 
(3.1)

N " Mg cos! = 0. 

The equations in (3.1) represent two equations in three unknowns, and so we need one 
more relation. As described in part (a), this will come from torque considerations. 

Choose the center of the cylinder to compute the torque about. Then, the only force 
exerting a torque is the friction force, and so we have 

f R = I cm ! = M R2 (a / R) = M R a , (3.2) 

where I cm = M R2 and the kinematic constraint for the no-slipping condition ! = a / R 
have been used. Equation (3.2) leads to f = M a , and inserting this into the first 
expression in (3.1) gives the two relations 

1f = Mg sin!. (3.3)
2 
1 a = g sin! (3.4)
2 

We’re still not done. For rolling without slipping, we need f < µs N , so we need, using 
the second expression in (3.1), 

1 µ > tan! . (3.5)s 2 



               
           

         
 
     

 
          
 

 

  

  

  
              

 
     

 
         

 
    

 
            

               
   

 

 

  

  

c) We shall use the fact that the energy of the cylinder-earth system is constant since the 
static friction force does no work. Choose a zero reference point for potential energy the 
bottom of the incline plane. Then the initial potential energy is 

Ui = Mgh. (3.6) 

For the given moment of inertia, the final kinetic energy is 

1 1 2Kf = M vf
2 + I cm ! f2 2 

1 1 )2 
= M vf

2 + MR2 (vf / R (3.7)
2 2 

= M vf
2. 

Set the final kinetic energy equal to the initial gravitational potential energy leads to 

Mgh = M vf
2. (3.8) 

The speed vf at the bottom is 

v f = gh. (3.9) 

We also could have used our acceleration result from part b). The cylinder rolls a distance 
L = h / sin! down the incline, and the speed vf at the bottom is related to the 
acceleration (Eq. (3.4) by 

2 " 1 % 
vf = 2aL = 2 g sin! (h / sin! )' #$ 2 & (3.10) 

= gh. 



     
 

              
                 
           

           
            

             
              
          

  
 

 
 

         
          

           
            
             

   
 

      
 
 

   
 

           
            

            
           

              
           

            
                 

      
 

             
           

              

Problem 4: Billiards Challenge 

A spherical billiard ball of uniform density has mass m and radius R and moment of 
inertia about the center of mass I cm = (2 / 5)mR2 . The ball, initially at rest on a table, is 
given a sharp horizontal impulse by a cue stick that is held an unknown distance h above 
the centerline (see diagram below). The coefficient of sliding fiction between the ball and 
the table is µk . You may ignore the friction during the impulse. The ball leaves the cue 
with a given speed v0 and an unknown angular velocity !0 . Because of its initial 
rotation, the ball eventually acquires a maximum speed of (9 / 7)v0 . The point of the 
problem is to find the ratio h / R. 

a)	 Write up your plan for solving this problem. You may find some of the following 
concepts useful: angular impulse is equal to the change in angular momentum; 
linear impulse is equal to the change in momentum; Newton’s Second Law; 
torque about the center-of-mass is proportional to the angular acceleration; if the 
torque about a point is zero, then the angular momentum about that point is 
constant; etc. 

b)	 Find the ratio h / R. 

Problem 4 Solutions: 

a) There are several ways to approach this problem. The first method presented here 
avoids any calculation of the force or torque provided by friction, or the details of the 
force between the cue and the ball. This method will first consider the “collision” 
between the cue and the ball by taking the collision point as the origin for finding the 
angular momentum, as the force between the cue and the ball exerts no torque about this 
point, and we are given that the friction may be ignored during this interaction. After this 
collision, the angular momentum will be taken about the initial contact point between the 
ball and the felt. It will be helpful to infer, either from the figure and from the fact that 
vf > v0 , that the ball is given overspin. 

First Solution: With respect to the point where the cue is in contact with the ball, note 
that the rotational angular momentum and the angular momentum due to the motion of 
the center of mass have different signs; the former is clockwise and the latter is 



             
      

 
 
   

 
           

            
 

 

  

  

 
 

          
 

   

 
 

         
 

          
                 

                
              

     
 
     

 
 

   
 

                
        

            
        

 

counterclockwise. The sum of these contributions to the angular momenta must sum to 
zero, and hence have the same magnitude; 

I ! = mv h . (4.1)cm 0 0 

While the ball is rolling and slipping, angular momentum is conserved about the contact 
between the ball and the felt. The initial and final angular momenta are 

= mv0 R + I !0Linitial cm 

= mv0 (R + h) 
L = mv R + I !final f cm f (4.2) 

= mvf R + (2 / 5)(mR2 )(vf / R)
 
= (7 / 5)mvf R
 

= (9 / 5)mv0 R,
 

Setting the initial and final angular momenta equal and solving for /h R gives 

h 4 = (4.3)
R 5 

(note that the figure is not quite to scale). 

Second Solution: As an alternative, taking the angular momentum after the collision 
about the center of the ball, note that the time !t between the moments the ball is struck 
and when it begins to roll without slipping is !v / (µk g) . But, if the angular momentum 
is taken about the center of the ball, after the ball is struck the angular impulse delivered 
to the ball by the friction force is 

(µk mg)R !t = I cm (" f #" 0 ) . (4.4) 

Third Solution: 

When the cue stick strikes the ball with a moment arm h from the center of the ball, the 
ball will eventually roll without slipping. The final velocity should depend on this 
parameter h and in fact should depend on the ratio /h R . If we measure the final velocity 
we should be able to determine this ratio. 



               
       

          
             

           
            

           
           
              

        
         

       
 

           
         

         
          

         
         

 
              

               
             

             
             

          
              

        
      

 
                

             
      

 
   
  

                
              

      
 
   
 

      
 

As the cue stick strikes the ball, it imparts both a linear impulse and an angular impulse to 
the ball resulting in changing the momentum associated with the center of mass 
translation of the ball and the angular momentum associated with the rotation about the 
center of mass. (We assume the impulse due to kinetic friction while the ball is being 
struck is negligible.) Both impulses (linear and angular) involve the integral of the force 
during the time interval that the force is applied and so we must have a constraint 
between the change in the momentum and the angular momentum. We can use this 
constraint to find a relation between the angular velocity about the center of mass and the 
velocity of the center of mass immediately after the ball is struck. We expect that the 
constant of proportionality will depend in some manner on the parameters h and R . 
Applying this constraint condition, we can determine the total angular momentum 
immediately after the ball has been stuck about any point. 

Once the ball rolls without slipping the final angular velocity doesn’t change and can be 
expressed in terms of the final velocity by the rolling without slipping condition. Since 
we are also given a relation between the final velocity and the initial velocity after the 
ball has been struck (in principle we can measure this), we can then calculate the angular 
momentum about the any point when the ball is rolling without slipping (using the rolling 
without slipping condition) entirely in terms of the initial velocity. 

In fact there is a particular set of points about which angular momentum is constant. We 
note that the friction force acts at the contact point. If we choose any point S along the 
contact line between the ball and the ground, the frictional torque is zero about that point 

! ! ! 
since r , ! fk = 0 . The torques due to the normal force and the gravitational force have S f 

the same moment arm, are equal in magnitude (since the two forces are equal in 
magnitude), but are opposite in direction, and hence cancel. Therefore the angular 
momentum is constant about any point S along the contact line between the ball and the 
ground. We can then apply conservation of angular momentum to eliminate the initial 
velocity and find the constraint condition for the ratio /h R . 

! 
Carrying out the Plan: The magnitude of the linear impulse due to the force F of the 
cue stick hitting the billiard ball is equal to the change in momentum of the center of 
mass of the ball according to 

Fdt = mv 0 . (4.5)! 
! 

The force F exerts a torque about the center of mass that has a magnitude ! = hF . The 
magnitude of the angular impulse is equal to the change in angular momentum about the 
center of mass according to 

! dt = hFdt = h Fdt = I " . (4.6)# # # cm 0 

Substituting the Equation (4.5) into the Equation (4.6) yields 



   
 

              
 
   
 

            
       

 
   
 

 
             

             
          

 
            

               
        

 
   
 

                
  

 
   
 

         
 
   
 

         
 
   
 

          
     

 

   

 

hmv 0 = Icm !0 . (4.7) 

The moment of inertia about the center of mass for a sphere is 

Icm = (2 / 5) mR 2 (4.8) 

We can substitute Equation (4.8) into Equation (4.7) and solve for the angular velocity of 
the ball immediately after it was struck, 

! = hmv /(2 / 5) mR 2 = 5hv / 2 R2 . (4.9)0 0 0 

Since the angular momentum is constant about any point S along the contact line between 
the ball and the ground contact friction force acts at the contact point, we now compute 
the initial and final angular momentums about S. 

There are two contributions to the angular momentum of the billiard ball about the point 
S, the orbital angular momentum due to the momentum of the center of mass, and the 
spin angular momentum about the center of mass. 

! ! ! ˆ ˆ ˆL = rS cm , " mtotal vcm + Icm ! k = r , mv k + I ! k , (4.10)S s m cm cm 

where k̂ points into the page in Figure 16.4. The initial angular momentum about S is 
therefore 

! ! !L = r " m v + I ! k̂ = (mv R + I ! )k̂ (4.11)S ,0 S cm , total cm ,0 cm 0 0 cm 0 

Applying Equations (4.8) and (4.9) to Equation (4.11) here yields 

! ˆL = (mv R + mhv )k (4.12)S ,0 0 0 

The final angular momentum about S is given by 

! ! ! ˆ ˆLS f = r " m v + I ! k = (mv R + I ! )k (4.13), S cm , total cm , f cm f f cm f 

The ball is rolling without slipping so vf = ! f R . The final velocity was given to be 
vf = (9 / 7)v0 . So Equation (4.12) becomes 

! 9 = mRv 0k̂ (4.14), 5 
LS f 



          
   

 

   

 
      

 

   

 
 

Using conservation of angular momentum about S, we then set Equation (4.12) equal to 
Equation (4.14) and find that 

9 
0 0 5 

mRv 0 . (4.15)mv R + mhv = 

We can solve Equation (4.15) for the ratio 

h 4 = . (4.16)
R 5 



  
    

 
            

               

               

               
 

         
          

           
            
             

   
 

                 
 

 

 
 

 
 

   
 

           
             

             
            

                
           
    

 
            
             

      
 

 
  

  

 

Problem 5: Bowling Ball 

A bowling ball of mass m and radius R is initially thrown down an alley with an initial 
speed v0 and backspin with angular speed !0 , such that v0 > R!0 . The moment of 

inertia of the ball about its center of mass is I cm = (2 / 5)mR2 . Your goal is to determine 

the speed vf of the bowling ball when it just starts to roll without slipping. 

a)	 Write up your plan for solving this problem. You may find some of the following 
concepts useful: angular impulse is equal to the change in angular momentum; 
linear impulse is equal to the change in momentum; Newton’s Second Law; 
torque about the center-of-mass is proportional to the angular acceleration; if the 
torque about a point is zero, then the angular momentum about that point is 
constant; etc. 

b)	 What is the speed vf of the bowling ball when it just starts to roll without 
slipping? 

Problem 5 Solutions: 

a) The easiest approach to solve this problem is to find a fixed point about which the 
torque is zero and then use the fact that angular momentum is constant about that point. 
So, if we take the point for determining torques and angular momenta about a point 
where the friction force exerts no torque, we shouldn’t need to know about the nature of 
the friction force. Accordingly, choose the point to be the original point of contact of the 
ball with the lane surface. Subsequently, even though the ball has moved, friction will 
still exert no torque. 

b) With respect to the contact point on the ground, the initial and final angular momenta 
are both the sum of two terms, one representing the motion of the center of mass and the 
other the rotation (“spin”) of the ball; 

= mv0 R ! I " 0Linitial cm (5.1) 
= mvf R + ILfinal cm " f . 



               

     
 

 
    

 
             

        

          
    

 
          

              
  

 
 

    
 

             
 

 
  

  

 
          

            

The problem is now one of basic algebra. For rolling without slipping, ! f = vf / R , and 

the given I cm = (2 / 5)mR2 gives 

vf = (5v0 ! 2" 0 R) / 7 . (5.2) 

It’s important to note the signs in the expressions in (5.1). We are given (and the figure 
certainly implies) that the scalar quantity!0 

, representing backspin, is positive, and so 

with positive direction for angular momenta being clockwise, the !0 
term in the initial 

angular momentum is negative. 

This problem may of course be done by considering torques and angular momenta about 
the center of the ball. The change in linear momentum (watch the signs again) is 
the impulse 

!p = m v( " v ) = "# f dt (5.3)f 0 

and the change in angular momentum is the angular impulse (the signs are still important) 

!L = I cm (" f + " 0 ) = # Rf dt . (5.4) 

Eliminating the linear impulse !" f dt between Equations (5.3) and (5.4), and using the 

given I cm = (2 / 5)mR2 yields the same result as that in Equation (5.2). 



    
 

            
            

         
          

                

             
 

 
 

          
  

 
             

    
 

               
 

         
          

 
 

   
 

             
               
    

 
                 
               

 

   

Problem 6: Rotational Collision 

Three point-like objects located at the points A, B and C of respective masses MA = M , 
MB = M and MC = 2M , as shown in the figure below. The three objects are initially 
oriented along the y -axis and connected by rods of negligible mass each of length D , 

ˆforming a rigid body. A fourth object of mass M moving with velocity v0 i collides and 
sticks to the object at rest at point A. Neglect gravity. Give all your answers in terms of 
M , 	v0 and D as needed. The z -axis points out of the page. 

a)	 Describe qualitatively in words how the system moves after the collision: 
direction, translation and rotation. 

b)	 What is the direction and magnitude of the linear velocity of the center of mass 
after the collision? 

c)	 What is the magnitude of the angular velocity of the system after the collision? 

!	 !d)	 What is the direction and magnitudes of the velocity vC  and acceleration aC of 
the object located at the point C immediately after the collision? 

Problem 6 Solutions 

a) From conservation of linear momentum, the system will move to the right (in the 
positive x -direction). The system will rotate about its center of mass, clockwise (in the 
negative z -direction from the right-hand rule). 

b) At the instant just before the collision, the position of the center of mass of the system 
is at the initial position of object B. The velocity of the center of mass is 

ˆ! Mv i 1 ˆv0i	 (6.1)vcm = 0 = 
M+ M+M+2M 5( ) 



 
             

 
            

              
                

          
  

 

 
    

  

 
 
                

        
 

           
                

              
             

    
 

 
    

  

 
         

               
              

 
 

   

 
               

 

and this will be the velocity of the center of mass after the collision. 

c) We could of course choose any point about which to calculate the angular momentum. 
Since the system after the collision is symmetric about the object at point B, choosing this 
point as the origin will simplify calculations. (The choice of this point as the origin is 
strongly suggested by the diagram.) The initial and final angular momenta about this 
point are 

! 
Linitial, B = Mv0D(!k̂)
! (6.2)
L = I " (!k̂)final, B cm, B f 

where I = 2(2MD2 ) is the moment of inertia of the system about point B. Equating cm, B 

initial and final angular momenta yields ! f = v0 / (4D) . 

d) The velocity is found by adding the center of mass velocity of the system to the 
velocity of the mass at point C relative to the center of mass. The velocity of the center of 
mass is that found in part (b) and the velocity with respect to the center of mass is given 
by the cross product of the vector angular velocity and the vector displacement of point C 
from the center, or 

! ! 1 $ ! v $ 1 v = v0 î %& 
+ # ' 0 k̂

%& 
( ('Dĵ) = ' v0 î . (6.3)C #" 5 " 4D 20 

In the limit of the collision being instantaneous, immediately after the collision the rod 
attaching the object at point C to the center of mass is parallel to the ĵ -direction. Viewed 
from the center of mass, this must be the direction of the acceleration, and so the vector 
acceleration is 

! v2 1 v2 C ˆ 0 ˆa = j = j . (6.4)C D 400 D 

This acceleration will be the same in both the “lab” frame and the center of mass frame. 



     
 

            
              
          
          

               
       

 

 
 

      
 

      
 

          
         

  
 

           
 

        
 

        
 
 

Problem 7: Hockey Puck Collision 

A hockey puck of mass m1 slides along ice with a velocity v0 and strikes one end of a 
stick lying on the ice of length l2 and mass m2 . The center of mass of the stick moves 
with an unknown magnitude vcm . The stick also rotates about the center of mass with 
unknown angular velocity ! f . The puck continues to move in the same straight line as 
before it hit the stick with velocity v f . Assume the ice is frictionless and there is no loss 
of mechanical energy during the collision. 

a) Write down the equation for conservation of momentum.
 

b) Write down the equation for conservation of energy.
 

c) Is there any external torques acting on the system consisting of the puck and the
 
stick? Write down the equation for conservation of angular momentum about a 
convenient point. 

d) Find the velocity of the center of mass of the stick. 

e) Find the velocity of the puck after the collision. 

f) Find the angular velocity of the stick after the collision. 
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Problem 7 Solutions: 

1
2


1
2


1
2


Conservation of Energy: 

2wf 

( )+ +v v0 f 

2m v1 fm1v
2
0 

Conservation of Momentum 

î : m1v0 = !m1vf + m2vcm (7.2) 

1 )2 1(2! = 
3 
m2!

2 (7.3)Icm = 
12 

m2 

Solve equation (7.3) for vcm : 

(7.4) 
m1 (v0 + vf )m2 

vcm = 

Substitute into equation (7.1): 

1 2 1 1 ! m1 $ 
2
1 ! 1 $ = (7.5)# 3 

m2!
2 

%& 
wf2 

m1v0 2 
m1v

2 
f + 
2 
m2 #" m2 %& 2 "

Conservation of Angular Momentum about cm: 

!
L0,cm = #m1v0 k̂ 
!
L
" 

k̂f ,cm = !#m1vf + Icmwf
!" !" 
L0,cm = L f ,cm 

Icm+
 (7.1)=
 



 

 

  

 

 

 
    

 

 

 
  

k̂ : !m1v0 = !!m1vf + Icmwf 

!m1 (v0 + vf ) = 3 m1" wf = (v0 + vf )1
3 
m2!

2 m2 

21 2 1 3!2 m1 (v0 + vf )2 

Icmwf = 
2	 2 m2!

2 

1 2	 3 m1
2 

)2 
= (v0 ! vfIcmwf2	 2 m2 

Substitute this into equation (7.5): 

1 2 1 1 ! m1
2 

)2 $ 3 m1
2 

2 += (v0 + vf )2 

2 
m1v0 2 

m1vf 2 
m2 # 2 (v0 + vf %& 

+ 
" m2 2 m2 

$1 2 1 1 ! 4 
m1
2 

)22 += (v0 + vf2 
m1v0 2 

m1vf # %&2 " m2 

' v0
2 = vf 

2 + 4 
m1 (v0 + vf )2
 

m2
 

v0
2 = vf 

22 + 4 
m1 (v02 + 2v0vf + vf )
m2
 

$ !
1 + 4 

m1 $0 = v0
2 ! (1 + 4 

m1 

%& 
+ 8 

m1 v0vf + vf 
2 

# # %&" m2 m2 " m2 

! 8 
m1	 $ !

(1 + 4 
m1 $ 

& %& 2 + 
m2 2 "

# m20 = vf #
# 

& v0vf + v0 

# 1 + 4 
m1 & !

1 + 4 
m1 $ 

" m2 % "# m2 %& 

Let ! = 4m1 / m2 



 

 

   

 
 

         

 

 

     

2! v0vf + v0
2 ("1 + ! )0 = v2 

f + 
1 + ! (1 + ! ) 

1
 

"2! # 4! 2v0
2 

2 # "1 + ! & & 2
 

" 4v0v0 ± %vf = 
1 + ! $ (1 + ! )2 $% 1 + ! '( ('

1 

! v0 
# 4! 2 " 4 ("1 + ! )(1 + ! )& 2 

= " (1 + ! 
v0 ± 

2 %$ (1 + ! )2 '
1
 

! v0 ±
(! 2 " ("1 + ! 2 ))2
 

= " v01 + ! 1 + !
 

! 1
 
= " v0 ± v01 + ! 1 + ! 

(!" + 1)Positive root: vf = ) v0(1 + " 

!" ! 1
Negative root: vf = v0 = !v0 . This is just the initial state. 

1 + " 

"
!4 

m1 + 1
% 
' #$ m2 & 
v0vf = 

" 
4 
m1 % 

+ 1' #$ m2 & 

when m1=m2 ! vf = 
5
3 v0 



"

 
        

 
 
 
 
 
 

  
 
 

 

 

 
 
    

 
    

   

 
   

 
    

 

 

 

 
  

 

 

 

Angular momentum about the pivot point is conserved. 

LP,0 = m1v0 2!k̂ 

2wf 

!
L p, f = !m1vf 2#k̂ + I pwf k̂ 

I p = (2#)2 = 
3 
m2#

21 4 m23 

2

2 2 I!! ! + (7 6)m v m v w= 1 0 1 f f .p

2
0m1v m1vf 

Assume energy is still conserved.
1
2


1
2


1
2

I p+
 (7.7)=
 

Solve equation (7.6) for I pwf = m12!(v0 + vf ) and substitute into equation (7.7) using: 

1 
1 1 m1

2 4!2 (v0 + vf )2 2 
m1
2 4!2 (v0 + vf )2 

I pw
2 
f = = 

2 2 I p 
4
3 
m2!

2 

21 2 1 m1 )2I pwf = 
2 
! 3 ! (v0 + vf2 m2 

Equation (7.7) becomes: 

1 2 = 
1 1 m1

2 

)2(v0 + vf2 
m1v0 2 

m
1 
v2 
f + 
2 
! 3 ! 

m2 

v0
2 = vf 

2 + 3 
m1 (v0 + vf )2
 

m2
 

v0
2 = vf 

22 + 3 
m1 (v02 + 2v0vf + vf )
m2
 

" % " %
! 0 = v2 

f 1 + 3 
m1 

' + 3 
m1 ( 2v0vf + v0 )1 + 3 

m12 

' #$ m2 & m2 #$ m2 & 



 
  

 
 

 
           

 

 

 

  

let ! = 3m1 / m2 then: 

0 = v2 
f (1 + ! ) + 2!v0vf + v0

2 (1 " ! ) 

This equation has exactly the same form as part a) so the solution is identical 

1 ! 3 
m1 

1 ! " m2v0 =vf = 
1 + " 1 + 3 

m1 

v0 

m2 

when m1 = m2 ! vf = 
2
1 v0 
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