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PROFESSOR: I now want to do a classic problem of hitting a billiard ball and then see what's going

to happen.

This is a frictionless table, which is a little bit artificial. And here is the billiard ball.

The billiard ball has a mass M. The mass is uniformly distributed throughout. And it

has a radius r. Let this be the center of the billiard ball C, so this radius in r. And

there is no fiction.

I hit the ball. I give it an impulse. I hit it here with an impulse, which is given. Let's

say j. And the impulse is given at a distance h above that point C. We will also

evaluate what happens when we change h. We can even make h negative. If I call

this positive, I could call this negative h. And h0 would be an impulse right through

the point C.

You expect-- and your intuition is correct-- that if you give it this impulse that the ball

will go to the right, of course. And that it will start to rotate, at least it will rotate in this

direction if h is positive. If h is negative it will rotate counterclockwise. And we will

evaluate that in great detail.

The hit is parallel to this surface, and this-- picture what you see here is a cross

section through the center of this billiard ball. The impulse is very short and very

brief.

The question always, what is the angular velocity? If you hit it above point C it will

start to rotate in this direction. The angular velocity omega about the center of

mass, c is the center of mass. What is that? And, you also want to know what is the

velocity of the center of mass itself? Before the impulse, the ball is at rest. And after

the impulse, the center of mass will have a velocity v center of mass. And there will

be a clockwise rotation or there will be a counterclockwise rotation depending upon

where you apply this impulse.

Now before you watch this segment, I would advise you to first visit a problem in

which I have a rod on a frictionless horizontal table. And I apply an impulse to that
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rod. The problem is quite similar, and all the tools that I'm developing there, I'm

going to use here. So I would strongly advise you to first look at that segment. In

fact, there are even two segments about how I solve the problem of hitting the rod

on that frictionless horizontal table. The rod will also start to move. The center of

mass will have a velocity. And it will also start to rotate about center of mass. So

there are lots of similarities.

All right, let's first start with Newton's first law. F equals M times a of the center of

mass. That equals M times dv dt. It's a vector of the center of mass.

I take the integral dt. I take the integral dt. So I do a time integral this part and of

that part.

So what do I get? I get that the integral from an initial time to a final time-- this is the

time interval that the force lasts. The force doesn't have to be constant in time. F dt

equals the integral over that same time interval, t initial to t final of M times dv center

of mass. This is the definition of impulse. As I said earlier, the force doesn't have to

be constant. It could change in time, and so the acceleration could change in time of

the center of mass. But the integral over that time interval t initial to t final of F dt,

that's the definition of impulse.

So this is j. And this equals M times the final velocity minus the initial velocity of the

center of mass. The initial velocity is 0 because your object is not moving before I

give the impulse. So you see, you get a very simple result and that is that v of the

center of mass equals the impulse divided by M. So if you know the impulse and

you know the mass of the ball, then you know the velocity of the center of mass.

Notice the velocity of the center of mass is exactly in the same direction of j. That is

sort of intuitive, isn't it?

Well, it could probably be in this direction, could it? Because it wouldn't jump off the

table. Maybe if you hit it like this, yeah, it could jump off the table. All right, this is

very intuitive. And so the magnitude of v center of mass equals j divided by M. Keep

in mind that they are vectors in this direction and j is in this direction. Notice that the

velocity of the center of mass is completely independent of h. That may not be so
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intuitive. In other words, it doesn't matter where you hit this billiard ball. Whether h is

the maximum value, which could be r or whether h is smaller than r or whether h is

even 0. You could hit it right here at the center. Or whether h is below the center of

mass. In which case, it will start to spin counterclockwise. The center of mass

velocity is always the same for a given value of the impulse. And that is not so

intuitive. At least not for me.

Let's now calculate the angular velocity omega about the center of mass. I want to

remind you of an important theorem, which you can prove if you want to, which is

the following-- and I will write it out. The total angular momentum relative to a point,

and let me call that point P Remember angular momentum, in general, is defined as

relative to a point. You can choose different points P and you may get different

angular momentums depending upon where you choose the point P. So the total

angular momentum relative to a chosen point P is the sum of two components.

Component number one is the angular momentum of the center of mass relative to

P. And the second component is the angular momentum of rotation about the

center of mass. So this portion is always taken about the center of mass. So about

point C. But here you can choose P anywhere you want to. You can even choose P

to be point C if you want that.

Now, I am therefore, free to choose any point that I want to choose in space. I could

choose this point, I could choose this point, I could choose this point or this point. I

will choose now a point, any point on this line through C parallel to j, and I call that

the line DCE. So that's where I will choose a point.

I could've picked any point and whatever follows will then be almost the same. I will

choose point D. So I have to evaluate now the component number one, which is the

angular momentum of the center of mass relative to point P.

The angular momentum relative to point D-- D is my choice-- equals the position

vector relative to point D cross product with the momentum of the center of mass

because it's the angular momentum of the center of mass relative to that point, and

my point is D. And that I claim is 0.
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If you choose point D, the position vector goes from D to the center of mass. That

would be r of D. That is this r of D. That is the angle that it makes with v center of

mass is 0. So this cross product equals 0. Because P and the velocity of the center

of mass are in the same direction. This is M, capital M, times v center of mass.

If I had chosen point E, then the angle between the position vector and the

momentum of the center of mass would have been 180 degrees. So this cross

product would also have been 0. So it's clear that this component is 0 if I choose the

point that I've chosen. If I choose any point on this line, the angular momentum of

the center of mass relative to any point on this line is 0. So that's why it may be

beneficial to choose such a point. Because that contribution 1 will then completely

disappear. And I think it would probably be the fastest way to solve this problem. But

you don't have to choose a point on the line DCE. You don't have to.

All right, so this component is not there. So now we have to go to the second

component, which is the angular momentum of rotation about the center of mass.

So we give the impulse before we give the the angular momentum about the center

of mass is 0. And after the impulse there is an angular momentum about the center

of mass C. At any moment in time, there will be a force acting in this direction during

the time that this force lasts, which is from the initial time to the final time, and the

time integral of F dt will be the impulse. And at any moment in time I have here the

position vector, which I will call r of C. And this distance here we have called h. We

will call h positive in this direction and we'll call h negative in this direction.

So, recall that dL dt, and I now have to choose point C because I have to calculate

the angular momentum of rotation about the center of mass. That equals the torque

relative to point C. And the torque relative to point C is the cross product between

the position vector and the force. So that is r of C cross F.

I now do a time integral. Integral of this dt, integral of this dt. So I'm going to get t

initial to t final of dL relative to point C equals the integral t initial to t final of rC cross

F dt.

What is this integral? Well, this integral is L after the impact. That means that time t
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final minus L before the impact that was at time tI, t initial, and this is 0. So that

equals now this integral. You can take r of C outside the bracket if you want to think

of it that way. The integral t initial t final of F dt, that integral pe definition is J. That's

the impulse. So this integral would be r of C cross J. So we now have a very simple

result that this vector angular momentum about the center of mass-- going to write

a C here-- equals rC cross J. The magnitude of the angular momentum about the

center of mass is the moment of inertia about the center of mass times the angular

velocity after the impulse has been given. And the magnitude of this quantity-- and I

want you to think of that yourself. r of C cross J. J is also in this direction. That is

going to be h times J. And you work that out for yourself.

So I get h times J. This is the magnitude of this vector. And this is the magnitude of

this vector. The direction of this vector would be in the paper if h were larger than 0.

The ball would start to rotate clockwise and therefore, the angular momentum and

also this cross product is in the paper. That vector would be out of the paper if h

were less than 0.

If I hit the ball here, it would start to rotate in this direction. And if it rotates in this

direction, the angular momentum vector about point C is up. So these are the

magnitudes and here you have the directions depending upon h.

The moment of inertia about point C of a solid sphere, a uniform mass distribution,

equals 2/5 M R squared.

If I substitute that in here, I find immediately that omega equals hJ divided by I

center of mass. And that becomes 5 times h times J divided by 2M R squared. And

this is my answer for the angular velocity after the impulse. Notice that omega does

depends on h, whereas the center of mass velocity did not depend on h. It's linearly

proportional with h. There's a maximum value that omega can have, which is when

h becomes R. Notice also that when h equals 0 that omega equals 0. That is kind of

intuitive, isn't it? Because if I hit that ball right through the center, you wouldn't

expect any rotation. That's quite intuitive. So if I hit it right here through C, you

wouldn't expect this to rotate. You would only expect the ball to translate. The
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center of mass would have a translation, but there would be no rotation. If h is

positive we get a clockwise rotation. Omega becomes positive.

If h is negative, if I'm below C, then think of omega as being negative, which would

give me a counterclockwise rotation.

Now if there is no fiction the motion will continue forever. In other words, if I hit it

here I would get a velocity of the center of mass. It would continue forever and ever.

And the rotation counterclockwise, the omega that I've calculated here would also

last forever and ever. However, in practice, if you do this on a billiard table, then of

course, what you will see is very, very different. Because there is friction there.

There better be fiction. That's the whole idea. And therefore, perhaps you have

seen this if you hit a billiard ball on the table quite low, then the ball will first, go

away from you.

You hit it here quite low. The ball will go away from you. It will go in the direction that

yo hit it. It will start to spin in this direction and you shouldn't be surprised if later in

time because of the friction, it starts rolling back at you. Well, we will do some

separate problems on how to work them with this roll. But you can see how that

happens because you give it a spin, a counterclockwise spin, and you move it away

from you. And because of the friction, the ball will then, at a later time, may come

back at you.

All right, there is a particular value of h for which the ball goes what me call into pure

roll.

What is pure roll? I have a segment in which I discuss pure roll, so I won't go into

that right now. I'll just give you the mathematical result. And that is that when the

velocity of the center of mass equals the angular velocity about the center of mass

times r, then and only then is the object in pure roll. These two don't have to be the

same at all. Omega could be 0 and the center of mass is not 0-- the velocity of the

center of mass.

If I hit the ball right in the center, omega would be 0 and v center of mass is not 0.
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We'd argue that the velocity is independent of where the impulse is applied. So this

would not hold in general. This only holds for one and only one point where I hit on

the ball. And you can find that by substituting in here for omega, you substitute v

center of mass divided by r. So when I do that I get v center of mass divided by r

equals 5h J divided by 2M R squared. I lose one R and v center of mass was J

divided by M. These R's are gone. Then this is correct. And so now I can lose the J

and I can lose the M. And so what do I find? That when h equals 2/5 R, and only

then would the ball go into pure roll. In other words, I have to hit the ball at a

distance h. We have the distance h here, whereby this is 2/5 R. Then the ball will go

into pure roll.

If h is larger than 2/5 R, then the velocity of the center of mass will be less than

omega R. And if h is smaller than 2/5 R, but let's take for now larger than 0. So it will

be above point C. Then, the velocity of the center of mass will be larger than omega

R.

Now in solving this problem because I solved for the velocity of the center of mass

and I solved for the angular velocity about the center of mass, I chose a point on the

line DCE. You could have chosen a point on the line through the impulse. Let me

get that. It's here on the floor.

I could have chosen a point anywhere on this line. The remarkable thing is, if I had

chosen any point P on this line, that the total angular momentum, which before the

impulse is 0, will also be 0 now after the impulse. You may say, well that's strange

because in the way you solved the problem before, the angular momentum was not

0 after the impulse. That's true because I chose point C.

If I choose another point-- well, for instance, a point on the line through the impulse.

Then, the angular momentum does not change. Angular momentum is now

conserved. It is 0 before and it is 0 after the impulse. You will see that often in

problems. That depending upon which point you choose, angular momentum may

be conserved or angular momentum may not be conserved.

What is the advantage of choosing a point on the line DCE? Well, there is that
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contribution 1 that I mark with a 1 will be 0.

If you choose a point through the-- anywhere on the line through the impulse, then

the total angular momentum is 0. But then, contribution 1 will not be 0 and

contribution 2 will not be 0. But the net must be 0. So contribution 1 and contribution

2, which are both vectors, must exactly cancel each other out. One most therefore

be in the paper and the other must be out of the paper.

I want you to leave with that idea and I want you to solve the problem by choosing a

point P anywhere through the line through J. Through the impulse. And you should

get the same answer for the velocity of the center of mass, and you should get the

same answer for the angular velocity after you apply the impulse. What will help you

is to look at a segment that I have taped of the rod on a frictionless horizontal

surface. Which I give the hit, an impulse. It will start to rotate and there be a

translation of the center of mass. And I solve that in two different ways. In one clip I

solve it by choosing a point on the line through the center parallel to the impulse.

And I also solve it independently by choosing a point on the line through the

impulse. And that is very similar to what I'm now suggesting to you. So the total

angular momentum will be conserved before the impulse at 0 and after the impulse

at 0. Very interesting. I want you to think about it. Angular momentum in this case is

not an intrinsic property of the motion. Angular momentum depends, in this case, on

which point you choose. Good luck.
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