
Module 4: One-Dimensional Kinematics 

4.1 Introduction 

Kinematics is the mathematical description of motion. The term is derived from the 
Greek word kinema, meaning movement. In order to quantify motion, a mathematical 
coordinate system, called a reference frame, is used to describe space and time. Once a 
reference frame has been chosen, we can introduce the physical concepts of position, 
velocity and acceleration in a mathematically precise manner. Figure 4.1 shows a 
Cartesian coordinate system in one dimension with unit vector î pointing in the direction 
of increasing x -coordinate. 

Figure 4.1 A one-dimensional Cartesian coordinate system. 

4.2 Position, Time Interval, Displacement 

Position 

Consider an object moving in one dimension. We denote the position coordinate of the 
center of mass of the object with respect to the choice of origin by x t ( ) . The position 
coordinate is a function of time and can be positive, zero, or negative, depending on the 
location of the object. The position has both direction and magnitude, and hence is a 
vector (Figure 4.2), 

x !( ) t = x t ( ) î . (4.2.1) 

We denote the position coordinate of the center of the mass at t = 0 by the symbol 
x0 ! x t ( = 0) . The SI unit for position is the meter [m] (see Section 1.3). 

Figure 4.2 The position vector, with reference to a chosen origin. 

Time Interval 



Consider a closed interval of time [t1, t2 ] . We characterize this time interval by the 
difference in endpoints of the interval such that 

!t = t2 " t1 . (4.2.2) 

The SI units for time intervals are seconds [s]. 

Definition: Displacement 

The change in position coordinate of the mass between the times t1 and t2 is 

! 
x t 2 1 î " ! ( ) ˆ!x " ( ( ) # x t ( )) x t i . (4.2.3) 

This is called the displacement between the times t1 and t2 (Figure 4.3).  
Displacement is a vector quantity. 

Figure 4.3 The displacement vector of an object over a time interval is the vector 
difference between the two position vectors 

4.3 Velocity 

When describing the motion of objects, words like “speed” and “velocity” are used in 
common language; however when introducing a mathematical description of motion, we 
need to define these terms precisely. Our procedure will be to define average quantities 
for finite intervals of time and then examine what happens in the limit as the time interval 
becomes infinitesimally small. This will lead us to the mathematical concept that velocity 
at an instant in time is the derivative of the position with respect to time. 

Definition: Average Velocity 

The component of the average velocity, vx , for a time interval !t is defined to be 
the displacement !x divided by the time interval !t , 

!x 
v " . (4.3.1) x !t 



The average velocity vector is then 

! !x î = vx ( ) t î . (4.3.2) v( ) t " 
!t 

The SI units for average velocity are meters per second "%m s$
!1 #& . 

Instantaneous Velocity 

Consider a body moving in one direction. We denote the position coordinate of the body 
by x t ( ) , with initial position x0 at time t = 0 . Consider the time interval [ , t t + !t] . The 
average velocity for the interval !t is the slope of the line connecting the points ( , t x t ( )) 
and ( , t x t ( + !t)) . The slope, the rise over the run, is the change in position over the 
change in time, and is given by 

rise 
= 
!x x t ( + !t) " x t ( ) . (4.3.3) v # = x run !t !t 

Let’s see what happens to the average velocity as we shrink the size of the time interval. 
The slope of the line connecting the points ( , t x t ( )) and ( , t x t ( + !t)) approaches the 
slope of the tangent line to the curve x t ( ) at the time t (Figure 4.4). 

Figure 4.4 Graph of position vs. time showing the tangent line at time t . 

In order to define the limiting value for the slope at any time, we choose a time 
interval [ , t t + !t] . For each value of !t , we calculate the average velocity. As !t " 0 , 
we generate a sequence of average velocities. The limiting value of this sequence is 
defined to be the x -component of the instantaneous velocity at the time t . 



Definition: Instantaneous Velocity 

The x -component of instantaneous velocity at time t is given by the slope of the 
tangent line to the curve of position vs. time curve at time t : 

vx ( ) t $ lim vx = lim 
!x x t ( + !t) # x t ( ) dx . (4.3.4) = lim $ 

! " 0 t 0 !t ! " t 0 !t dt t ! " 

The instantaneous velocity vector is then 

v !( ) t = vx ( ) t î . (4.3.5) 

Example 1: Determining Velocity from Position 

Consider an object that is moving along the x -coordinate axis represented by the 
equation 

1
x t ( ) = x0 + bt 2 (4.3.6) 

2 

where x0 is the initial position of the object at t = 0 . 

We can explicitly calculate the x -component of instantaneous velocity from Equation 
(4.3.4) by first calculating the displacement in the x -direction, !x = x t ( + !t) " x t ( ) . We 
need to calculate the position at time t + !t , 

x t ( + !t) = x0 + 
1 
b t ( + !t)2 = x0 + 

1 
b t ( 2 + 2t!t + !t 2 ). (4.3.7) 

2 2 

Then the instantaneous velocity is 

x t ( + !t) % x t ( ) &
(

# x0 + 
1
2 
b t ( 2 + 2t !t + !t 2 )

)
'
$ % 

(
&
# x0 + 

1
2 
bt 2 

)

$ 

. (4.3.8) 
' 

vx ( ) t = lim = lim 
! " t 0 ! t 0 !tt ! " 

This expression reduces to 

vx ( ) t = lim #%bt + 
1 $b !t & . (4.3.9) 

t 0 ' 2 (! " 

The first term is independent of the interval !t and the second term vanishes because the 
limit as !t " 0 of !t is zero. Thus the instantaneous velocity at time t is 



vx ( ) t = bt . (4.3.10) 

In Figure 4.5 we graph the instantaneous velocity, vx ( ) t , as a function of time t . 

Figure 4.5 A graph of instantaneous velocity as a function of time. 

4.4 Acceleration 

We shall apply the same physical and mathematical procedure for defining acceleration, 
the rate of change of velocity. We first consider how the instantaneous velocity changes 
over an interval of time and then take the limit as the time interval approaches zero. 

Average Acceleration 

Acceleration is the quantity that measures a change in velocity over a particular time 
interval. Suppose during a time interval !t a body undergoes a change in velocity 

!v ! = v !(t + !t) " v !( ) t . (4.4.1) 

The change in the x -component of the velocity, !vx , for the time interval [ , t t + !t] is 
then 

!vx = vx (t + !t) " vx ( ) t . (4.4.2) 

Definition: Average Acceleration 

The x -component of the average acceleration for the time interval !t is defined 
to be 

t t !v a ! = ax î #
!vx î = 

(vx ( + !t) " vx ( )) î = x î . (4.4.3) 
!t !t !t 

The SI units for average acceleration are meters per second squared, [m s !2 ] ." 



Instantaneous Acceleration 

On a graph of the x -component of velocity vs. time, the average acceleration for a time 
interval !t t v x ( )) and is the slope of the straight line connecting the two points ( , t 
(t + !t v , x (t + !t)) . In order to define the x -component of the instantaneous acceleration 
at time t , we employ the same limiting argument as we did when we defined the 
instantaneous velocity in terms of the slope of the tangent line. 

Definition: Instantaneous Acceleration. 

The x -component of the instantaneous acceleration at time t is the limit of the 
slope of the tangent line at time t of the graph of the x -component of the velocity 
as a function of time, 

a ( ) t $ lim a = lim 
(vx (t + !t) # vx ( )) t !vx dv x . (4.4.4) = lim $x xt ! " t 0! " ! " 0 t 0 !t !t dt 

The instantaneous acceleration vector is then 

a !( ) t = ax ( ) t î . (4.4.5) 

In Figure 4.6 we illustrate this geometrical construction. 

Figure 4.6 Graph of velocity vs. time showing the tangent line at time t . 

Since velocity is the derivative of position with respect to time, the x -component 
of the acceleration is the second derivative of the position function, 

2dv d x 
a = x = 

dt dt 2 
. (4.4.6) x 



Example 2: Determining Acceleration from Velocity 

Let’s continue Example 1, in which the position function for the body is given by 
x = x0 + (1/ 2) bt 2 , and the x -component of the velocity is vx = bt . The x -component of 
the instantaneous acceleration at time t is the limit of the slope of the tangent line at time 
t of the graph of the x -component of the velocity as a function of time (Figure 4.5) 

dv v (t + !t) # v ( ) bt + b t 
= b . (4.4.7) t ! # bt 

a = x = lim x x = lim x ! " t 0dt !t ! " t 0 !t 

Note that in Equation (4.4.7), the ratio !v / !t is independent of !t , consistent with the 
constant slope of the graph in Figure 4.4. 

4.5 Constant Acceleration 

Let’s consider a body undergoing constant acceleration for a time interval !t = [0, t] . 
When the acceleration ax is a constant, the average acceleration is equal to the 
instantaneous acceleration. Denote the x -component of the velocity at time t = 0 by 
vx,0 ! vx (t = 0) . Therefore the x -component of the acceleration is given by 

a = a = 
"vx = 

vx ( ) t ! vx,0 . (4.5.1) x x "t t 

Thus the velocity as a function of time is given by 

v ( ) t = v + a t . (4.5.2) x x,0 x 

When the acceleration is constant, the velocity is a linear function of time. 

Velocity: Area Under the Acceleration vs. Time Graph 

In Figure 4.7, the x -component of the acceleration is graphed as a function of time. 



Figure 4.7 Graph of the x -component of the acceleration for ax constant as a function 
of time. 

The area under the acceleration vs. time graph, for the time interval !t = t " 0 = t , is 

Area( a , t) ! a t . (4.5.3) x x 

Using the definition of average acceleration given above, 

Area( a , ) t ! a t = "v = v ( ) t # v . (4.5.4) x x x x x,0 

Displacement: Area Under the Velocity vs. Time Graph 

In Figure 4.8, we graph the x -component of the velocity vs. time curve. 

Figure 4.8 Graph of velocity as a function of time for ax constant. 

The region under the velocity vs. time curve is a trapezoid, formed from a rectangle and a 
triangle and the area of the trapezoid is given by 

1Area( vx , ) t = vx,0 t + (vx ( ) t ! vx,0 )t . (4.5.5) 
2 

Substituting for the velocity (Equation (4.5.2)) yields 

Area( vx , ) t = vx,0 t + 
1 (v + a t ! v )t = v t + 

1 
a t 2 . (4.5.6) 

2 x,0 x x,0 x,0 2 x 



Figure 4.9 The average velocity over a time interval. 

We can then determine the average velocity by adding the initial and final velocities and 
dividing by a factor of two (see Figure 4.9). 

1 
v = (v ( ) t + vx,0 ) . (4.5.7) x 2 x 

The above method for determining the average velocity differs from the definition of 
average velocity in Equation (4.3.1). When the acceleration is constant over a time 
interval, the two methods will give identical results. Substitute into Equation (4.5.7) the 
x -component of the velocity, Equation (4.5.2), to yield 

1 1 1 
v = (vx (t) + vx ,0 ) = ((vx ,0 + ax t) + vx ,0 ) = vx ,0 + ax t . (4.5.8) x 2 2 2 

Recall Equation (4.3.1); the average velocity is the displacement divided by the time 
interval (note we are now using the definition of average velocity that always holds, for 
non-constant as well as constant acceleration).  The displacement is equal to 

!x " x t ( ) # x0 = vx t . (4.5.9) 

Substituting Equation (4.5.8) into Equation (4.5.9) shows that displacement is given by 

!x " x t ( ) # x = v t = v t + 
1 
a t 2 . (4.5.10) 0 x x,0 2 x 

Now compare Equation (4.5.10) to Equation (4.5.6) to conclude that the displacement is 
equal to the area under the graph of the x -component of the velocity vs. time, 

!x " x t ( ) # x0 = vx,0 t + 
1
2 x 

2 
xa t = Area( v , t), (4.5.11) 



and so we can solve Equation (4.5.11) for  the position as a function of time, 

1
x t ( ) = x0 + vx,0 t + a t 2 . (4.5.12) 

2 x 

Figure 4.10 shows a graph of this equation. Notice that at t = 0 the slope may be in 
general non-zero, corresponding to the initial velocity component vx,0 . 

Figure 4.10 Graph of position vs. time for constant acceleration. 

Example 3: Accelerating Car 

A car, starting at rest at t = 0 , accelerates in a straight line for 100 m with an unknown 
constant acceleration. It reaches a speed of 20 m ! s "1 and then continues at this speed for 
another 10 s . 

a) Write down the equations for position and velocity of the car as a function of 
time. 

b) How long was the car accelerating? 

c) What was the magnitude of the acceleration? 

d) On the graphs below, plot speed vs time, acceleration vs time, and position vs time 
for the entire motion. Carefully label all axes and indicate your choice for units. 

e) What was the average velocity for the entire trip? 

Solutions: 

a) For the acceleration a , the position x(t) and velocity v(t) as a function of time t for a 
car starting from rest are 

x(t) = (1 / 2) at2 

(4.5.13) 
ax (t) = at. 



b) Denote the time interval during which the car accelerated by t1 . We know that the 

position x(t1) = 100m and v(t1) = 20 m ! s "1 . Note that we can eliminate the acceleration 
a between the Equations (4.5.13) to obtain 

x(t) = (1 / 2)v(t) t . (4.5.14) 

We can solve this equation for time as a function of the distance and the final speed 
giving 

t = 2 
x(t) 

. (4.5.15) 
v(t) 

This is sometimes expressed as “for constant acceleration, the distance traveled during 
the time interval [0,t] is the product of the average velocity vave[0,t] = v(t) / 2 and the 
elapsed time.” 

We can now substitute our known values for the position x(t1) = 100m and 

v(t1) = 20 m ! s "1 and solve for the time interval that the car has accelerated 

t1 = 2 
x(t1) 100 m 

= 10s . (4.5.16) = 2 
v(t1) 20 m ! s "1 

c) We can substitute into either of the expressions in Equation (4.5.13);  the second is 
slightly easier to use, 

a = = 
v(t1) 20 m ! s "1 

= 2.0m ! s "2 (4.5.17) 
t1 10s 

d) The x-component of acceleration vs. time, x-component of the velocity vs. time, and 
the position vs. time are piece-wise functions given by 

"2 m ! s-2 ; 0 < t < 10 s 
ax (t) = # 

$0; 10 s < t < 20 s % 

vx (t) = 
$
#
"(2 m ! s-2 

-1;
) t; 0 < t < 10 s 

$20 m ! s 10 s < t < 20 s %

# -2 ) t2;
x(t) = $

%(1 / 2)(2 m ! s 0 < t < 10 s 

&100 m +(2 m ! s-2 )( t " 10 s); % 10 s < t < 20 s 



The graphs of the x-component of acceleration vs. time, x-component of the velocity vs. 
time, and the position vs. time are shown in Figure 4.11 

Figure 4.11 Graphs of the x-components of acceleration, velocity and position as piece-
wise functions of time 

f)	 After accelerating, the car travels for an additional ten seconds at constant speed 
and during this interval the car travels an additional distance 
!x = v(t1) " 10s=200m (note that this is twice the distance traveled during the 
10s of acceleration), so the total distance traveled is 300m and the total time is 
20s , for an average velocity of 

v	 = 
300m 

=15m !s "1 .	 (4.5.18) ave 20s 



Example 4 Catching a bus 

At the instant a traffic light turns green, a car starts from rest with a given constant 
acceleration,5.0 ! 10"1 m # s-2 . Just as the light turns green, a bus, traveling with a given 
constant speed, 1.6 ! 101 m " s-1 , passes the car. The car speeds up and passes the bus 
some time later. How far down the road has the car traveled, when the car passes the bus? 

Solution: 

I. Understand – get a conceptual grasp of the problem 

Think about the problem. How many objects are involved in this problem? Two, the bus 
and the car. How many different stages of motion are there for each object? Each object 
has one stage of motion. For each object, how many independent directions are needed to 
describe the motion of that object? One, only. What information can you infer from the 
problem? The acceleration of the car, the velocity of the bus, and that the position of the 
car and the bus are identical when the bus just passes the car. Sketch qualitatively the 
position of the car and bus as a function of time (Figure 4.12). 

Figure 4.12 Position vs. time of the car and bus. 

What choice of coordinate system best suits the problem? Cartesian coordinates with a 
choice of coordinate system in which the car and bus begin at the origin and travel along 
the positive x-axis (Figure 4.13). Draw arrows for the position coordinate function for the 
car and bus. 

Figure 4.13 A coordinate system for car and bus. 

II. Devise a Plan - set up a procedure to obtain the desired solution 



Write down the complete set of equations for the position and velocity functions. There 
are two objects, the car and the bus. Choose a coordinate system with the origin at the 
traffic light with the car and bus traveling in the positive x-direction. Call the position 
function of the car, x1(t) , and the position function for the bus, x2 (t) . In general the 
position and velocity functions of the car are given by 

x1(t) = x1,0 + vx10t + 
1 

t2a
2 x ,1

vx ,1(t) = vx10 + ax ,1t 

In this example, using both the information from the problem and our choice of 
coordinate system, the initial position and initial velocity of the car are both zero, x1,0 = 0 

and vx10 = 0 , and the acceleration of the car is non-zero ax ,1 ! 0 . So the position and 
velocity of the car is given by 

1 
x1(t) = ax ,1t

2 ,
2 

vx ,1(t) = ax ,1t . 

The initial position of the bus is zero, x2,0 = 0 , the initial velocity of the bus is non-zero, 

x2 (ta ) = vx ,20ta vx ,20 ! 0 , and the acceleration of the bus is zero, ax ,2 = 0 . So the position 
function for the bus is 

x2 (t) = vx ,20t . 

The velocity is constant, 

vx ,2 (t) = vx ,20 . 

Identify any specified quantities. The problem states: “The car speeds up and passes the 
bus some time later.” What analytic condition best expresses this condition? Let t = ta 

correspond to the time that the car passes the bus. Then at that time, the position 
functions of the bus and car are equal, 

x1(ta ) = x2 (ta ) . 

How many quantities need to be specified in order to find a solution? There are three 
independent equations at time t = ta : the equations for position and velocity of the car 



x1(ta ) = 
1 2a t
2 x ,1 a 

vx ,1(ta ) = ax ,1ta , 

and the equation for the position of the bus, 

. 

There is one ‘constraint condition’ 

x1(ta ) = x2 (ta ) . 

The six quantities that are as yet unspecified are 

x1(ta ) , x2 (ta ) , vx ,1(ta ) , vx ,20 , ax , ta 

So you need to be given at least two numerical values in order to completely specify all 
the quantities; for example the distance where the car and bus meet. The problem 
specifying the initial velocity of the bus, vx ,20 , and the acceleration, ax , of the car with 
given values. 

III. Carry our your plan – solve the problem! 

The number of independent equations is equal to the number of unknowns so you can 
design a strategy for solving the system of equations for the distance the car has traveled 
in terms of the velocity of the bus vx ,20 and the acceleration of the car ax ,1 , when the car 
passes the bus. 

Let’s use the constraint condition to solve for the time t = t where the car and bus meet. a 

Then we can use either of the position functions to find out where this occurs. Thus the 
constraint condition, x1(ta ) = x2 (ta ) becomes 

1 2a t = v t .
2 x ,1 a x ,20 a 

We can solve for this time, 

v 
t = 2 x ,20 . a a x ,1 



Therefore the position of the car at the meeting point is 

21 2 1 !
 v $
 v 
x1(ta ) = 

2

a t x ,1 a = a

2
 x ,1 #
"


2
 x ,20 
&
%

= 2


a 
x ,20 

x ,1 

.

a x ,1 

IV. Look Back – check your solution and method of solution 

Check your algebra. Do your units agree? The units look good since in the answer the 
two sides agree in units, 

! m2 % s-2 # 
!m# ' 

" 
" $ = & m% s-2 

$ 

and the algebra checks. 

Substitute in numbers. Suppose ax = 5.0 ! 10"1 m # s-2 and vx ,20 = 1.6 ! 101 m " s-1 , Introduce 

your numerical values for vx ,20 and ax , and solve numerically for the distance the car has 
traveled when the bus just passes the car. Then 

v (1.6 ! 101 m " s-1 )
= 6.4 ! 101st = 2 x ,20 = 2 a ax ,1 (5.0 ! 10#1 m " s-2 ) 

v2 (1.6 ! 101 m " s-1 )2 

= 2 = 1.0 ! 103mx1(ta ) = 2 
ax

x

,1 

,20 ( ) (5.0 ! 10#1 m " s-2 ) 

Check your results. 

Once you have an answer, think about whether it agrees with your estimate of 
what it should be. Some very careless errors can be caught at this point. Is it possible that 
when the car just passes the bus, the car and bus have the same velocity? Then there 
would be an additional constraint condition at time t = t , that the velocities are equal, a 

vx ,1(ta ) = vx ,20 . 

Thus 
vx ,1(ta ) = ax ,1ta = vx ,20 

implies that 



v 
t = x ,20 . a a x ,1 

From our other result for the time of intersection 

2v 
t = x ,20 . a a x ,1 

But these two results contradict each other, so it is not possible. 

4.6 Free Fall 

An important example of one-dimensional motion (for both scientific and historical 
reasons) is an object undergoing free fall. Suppose you are holding a stone and throw it 
straight up in the air. For simplicity, we’ll neglect all the effects of air resistance. The 
stone will rise and fall along a line, and so the stone is moving in one dimension. 

Galileo Galilei was the first to definitively state that all objects fall towards the 
earth with a constant acceleration, later measured to be of magnitude g = 9.8 m s " !2 to 
two significant figures (see Section 3.3). The symbol g will always denote the 
magnitude of the acceleration at the surface of the earth. (We will later see that Newton’s 
Universal Law of Gravitation requires some modification of Galileo’s statement, but near 
the earth’s surface his statement holds.) Let’s choose a coordinate system with the origin 
located at the ground, and the y -axis perpendicular to the ground with the y -coordinate 
increasing in the upward direction. With our choice of coordinate system, the acceleration 
is constant and negative, 

ay ( ) = !g = !9.8 m s !2t " . (4.5.19) 

When we ignore the effects of air resistance, the acceleration of any object in free 
fall near the surface of the earth is downward, constant and equal to 9.8 m s!2 ." 

Of course, if more precise numerical results are desired, a more precise value of g must 
be used (see Section 3.3). 

Equations of Motions 

We have already determined the position equation (Equation (4.5.12)) and 
velocity equation (Equation (4.5.2)) for an object undergoing constant acceleration. With 
a simple change of variables from x ! y , the two equations of motion for a freely falling 
object are 



y t ( ) = y0 + vy ,0 t ! 
1 g t 2 (4.5.20) 
2 

and 

vy ( ) t = vy ,0 ! g t , (4.5.21) 

where y0 is the initial position from which the stone was released at t = 0 , and vy ,0 is the 
initial y -component of velocity that the stone acquired at t = 0 from the act of throwing. 

Example 5: Measuring g The acceleration of gravity can be measured by projecting a 
body upward and measuring the time interval that it takes to pass two given points A and 
B both when the body rises and when it falls again. The point B is a height h above the 
point A . Let tA denote the time interval that elapses as the body passes the point A on 
its way up and its way down. Let tB denote the time interval that elapses as the body 
passes the point B on its way up and its way down. Show that, assuming the acceleration 
is constant, its magnitude is given by 

8h .g = 2TA 
2 ! TB 

Include in your answer a description of the strategy and any diagrams or graphs that you 
have chosen for solving this problem. You may want to consider the following issues. 
Where do your measured quantities appear on a plot of height vs. time? What type of 
coordinate system will you choose? Where is a good place to choose your origin? 

Solution: we first make a graph of the motion in the vertical direction as a function 

From the graph, we choose our origin at that the first time the object crosses the point A 
as shown in the figure below. 



This is just one-dimensional motion with constant acceleration (free fall) so the equation 
for the position is given by 

1 y(t) = v0yt ! gt2 . (4.5.22) 
2 

We note that the instant the ball returns to the first point A occurs at time t = tA and the 
position at that instant is y(t = tA ) = 0. We also note that the instant the ball first reaches 
point B occurs at time t1 = (tA ! tB ) / 2 and the position at that instant is y(t = t1) = h. 
Using this information in Eq. (4.5.22), we get that 

0 = y(tA ) = v0ytA ! 
1 gtA 

2 , (4.5.23) 
2 

1h = y((tA ! tB ) / 2) = v0y (tA ! tB ) / 2 ! 
2 

g ((tA ! tB ) / 2 )2 
. (4.5.24) 

We can solve Eq. (4.5.23) for the initial y-component of the velocity 

1 v = gtA (4.5.25) 0y 2 

which we can now substitute into Eq. (4.5.24) and find that 

h = #
! 1 gtA 

$
& (tA ' tB ) / 2 ' 

1 g ((tA ' tB ) / 2 )2 
. (4.5.26) 

" 2 % 2 
Expanding we have that 

! 1 $ 1 2 2g(tA + tB ' 2tAtB ) (4.5.27) h = # gtA & (tA ' tB ) / 2 ' 
" 2 % 8 

1h = g(tA 
2 ! tB 

2 ) (4.5.28) 
8 

We can solve this last Eq. (4.5.28) for g , 



8h 
(tA 

2 ! tB 
2 ) 

(4.5.29) g = 
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