MITOCW | MIT8_01SCF10mod04_03_300k

PROFESSOR: I now want to discuss the subtraction of vectors.

If we have the same vectors A and B and C now equals A minus B, then it should not come as a surprise that A minus B equals $A x$ minus $B x$ in the x-direction plus $A y$ minus B of y in the y-direction plus A of z minus B of z in the z-direction. So this is the x -component of the vector C , this is the y -component, and this is the z component of the vector C .

We can also see that in a geometrical way, to get some feeling for it, what it means to subtract vectors. And again, I will take a two-dimensional case. It's easier to see. And for simplicity, I will take the vectors only in the y - and the x-plane. But what I do holds in general, also in three dimensions.

So we have now here the y-axis, and we have the plus x-axis, the origin plus y-axis. Let this vector be A and let this vector be B . And we want to know what the vector C is, which is A minus B.

Now I can construct a parallelogram by drawing this line from B to A. Draw a parallel line through the tail of B. Draw a parallel line through the tip of A parallel to B. And where these two intersect, this is now my vector C, which is A minus B.

You can easily see this in a different way. You can see that this is, indeed, correct. I can think of this subtraction as the following: C plus B equals A. So the question now is, which vector do I have to add to B, namely, the vector C, to get A ?

Well, you see immediately that if I add this vector to this vector, following the rules of the adding of vectors making a parallelogram, that this vector A is the sum of B and C. That's one way of doing it.

Another way of doing it is saying, ah-ha! C is also A plus minus B. So minus B is this vector, it's the same as this one, but 180 degrees flipped over. Now I have to add this vector to A to find C . Well, there we go. I make a parallelogram. There we go. And where do I end up? Right here. So notice that the sum of this vector and this
vector according to the summation rules indeed gives me this vector. And so this is a nice way of sort of seeing in your head geometrically what it means when you subtract vectors.

