
Module 5: One Dimensional Kinematics Non-Constant

Acceleration


5.1 Integration and Kinematics 

Change of Velocity as the Integral of Non-constant Acceleration 

When the acceleration is a non-constant function, we would like to know how the x -
component of the velocity changes for a time interval !t = [0, t] . Since the acceleration is 
non-constant we cannot simply multiply the acceleration by the time interval. We shall 
calculate the change in the x -component of the velocity for a small time interval 
!ti " [ti , ti+1] and sum over these results. We then take the limit as the time intervals 
become very small and the summation becomes an integral of the x -component of the 
acceleration. 

For a time interval !t = [0, t] , we divide the interval up into N small intervals 
!ti " [ti , ti+1] , where the index i = 1, 2, ... , N , and t1 ! 0 , tN ! t . Over the interval !ti , 

we can approximate the acceleration as a constant, ax (ti ) . Then the change in the x -
component of the velocity is the area under the acceleration vs. time curve, 

!vx ,i " vx (ti+1) # vx (ti ) = ax (ti ) !ti + Ei (5.1.1) 

where Ei is the error term (see Figure 5.11a). Then the sum of the changes in the x -
component of the velocity is 

i= N 

"!vx,i = (vx (t2 ) # vx (t1 = 0)) + (vx (t3) # vx (t2 )) + ! + (vx (tN = t) # vx (tN #1)). (5.1.2) 
i=1 

In this summation pairs of terms of the form (v (t ) ! v (t )) = 0 sum to zero, and the x 2 x 2 

overall sum becomes 

i= N 

vx (t) ! vx (0) = #"vx ,i . (5.1.3) 
i=1 

Substituting Equation (5.1.1) into Equation (5.1.3), 

i= N i= N i= N 

vx (t) ! vx (0) = #"vx ,i = # ax (ti ) "ti + # Ei . (5.1.4) 
i=1 i=1 i=1 
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We now approximate the area under the graph in Figure 5.11a by summing up all the 
rectangular area terms, 

i= N 

Area N (ax ,t) = " ax (ti ) !ti . (5.1.5) 
i=1 

Figures 5.11a and 5.11b Approximating the area under the graph of the x -component of 
the acceleration vs. time 

Suppose we make a finer subdivision of the time interval !t = [0, t] by increasing N , as 
shown in Figure 5.11b. The error in the approximation of the area decreases. We now 
take the limit as N approaches infinity and the size of each interval !ti approaches zero. 
For each value of N , the summation in Equation (5.1.5) gives a value for Area N (ax ,t) , 
and we generate a sequence of values 

{Area1(ax ,t), Area2(ax ,t), ..., Area N (ax ,t)} . (5.1.6) 

The limit of this sequence is the area, Area(ax ,t) , under the graph of the x -component of 
the acceleration vs. time. When taking the limit, the error term vanishes in Equation 
(5.1.4), 

i= N 

lim # Ei = 0 . (5.1.7) 
N !" i=1 

Therefore in the limit as N approaches infinity, Equation (5.1.4) becomes 
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i= N i= N i= N 

v (t) ! v (0) = lim a (t ) $t + lim E = lim a (t ) $t = Area(a ,t) ,(5.1.8) x x N "# 
% x i i N "# 

% i N "# 
% x i i x 

i=1 i=1 i=1 

and thus the change in the x -component of the velocity is equal to the area under the 
graph of x -component of the acceleration vs. time. 

Definition: Integral of acceleration 

The integral of the x -component of the acceleration for the interval [0, t] is 
defined to be the limit of the sequence of areas, Area N (ax ,t) , and is denoted by 

t != t i= N 

" ax (t!) dt! # lim & ax (ti ) $ti = Area(ax ,t) . (5.1.9) 
t !=0 

$ti %0 
i=1 

Equation (5.1.8) shows that the change in the x –component of the velocity is the integral 
of the x -component of the acceleration with respect to time. 

t " = t 

vx (t) ! vx (0) = # ax (t") dt" . (5.1.10) 
t "=0 

Using integration techniques, we can in principle find the expressions for the velocity as 
a function of time for any acceleration. 

Integral of Velocity 

We can repeat the same argument for approximating the area Area(vx , t) under the graph 
of the x -component of the velocity vs. time by subdividing the time interval into N 
intervals and approximating the area by 

i= N 

Area N (ax , t) = " vx (ti ) !ti . (5.1.11) 
i=1 

The displacement for a time interval !t = [0, t] is limit of the sequence of sums 
Area N (ax , t) , 

i= N 

!x = x(t) " x(0) = lim % v (t ) !t . (5.1.12) 
N #$ x i i 

i=1 

This approximation is shown in Figure 5.12. 
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Figure 5.12 Approximating the area under the graph of the x -component of the velocity 
vs. time.  

Definition: Integral of Velocity 

The integral of the x -component of the velocity for the interval [0, t] is the limit 
of the sequence of areas, Area N (ax , t) , and is denoted by 

t != t i= N 

" vx (t!) dt! # lim & vx (ti ) $ti = Area(vx ,t) . (5.1.13) 
t !=0 

$ti %0 
i=1 

The displacement is then the integral of the x -component of the velocity with respect to 
time, 

t #= t 

!x = x(t) " x(0) = $ vx (t#) dt# . (5.1.14) 
t #=0 

Using integration techniques, we can in principle find the expressions for the position as 
a function of time for any acceleration. 

Example: 

Let’s consider a case in which the acceleration, ax (t) , is not constant in time, 

ax (t) = b0 + b1 t + b2 t
2 (5.1.15) 

The graph of the x -component of the acceleration vs. time is shown in Figure 5.13 
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Figure 5.13 A non-constant acceleration vs. time graph. 

Let’s find the change in the x -component of the velocity as a function of time. Denote 
the initial velocity at t = 0 by vx ,0 ! vx (t = 0) . Then, 

t "= t t "= t 

vx (t) ! vx ,0 = # ax (t") dt" = # (bo + b1 t" + b2 t"
2 ) dt" = b0 t + 

b1 t
2 b2 t

3 

. (5.1.16) + 
2 3t "=0 t "=0 

The x -component of the velocity as a function in time is then 

vx (t) = vx ,0 + b0 t + 
b1

2 
t2 

+ 
b2

3 
t3 

. (5.1.17) 

Denote the initial position by x0 ! x(t = 0) . The displacement as a function of time is the 
integral 

t "= t 

x(t) ! x0 = # vx (t") dt". (5.1.18) 
t "=0 

Use Equation (5.1.17) for the x -component of the velocity in Equation (5.1.18) to find 

t "= t # t"2 t"3 & t2 t3 t4 

x(t) ! x0 = 
t "
) 
=0 
%
$ 

vx ,0 + b0 t" + 
2 3 ' 2 6 12 

b1 + 
b2 

( dt" = vx ,0 t + 
b0 + 

b1 + 
b2 . (5.1.19) 

Finally the position is then 
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x(t) = x0 + v t + 
b0 t

2 

+ 
b1 t

3 

+ 
b2 t

4 

. (5.1.20) x ,0 2 6 12 

Example 2: A car is driving through a green light at t = 0 located at x = 0 with an initial 
speed vc,0 = 12 m ! s-1 . The acceleration of the car as a function of time is given by 

a = c 

#%
$ 
%&


0; 0 < t < t1 = 1s 

!(6 m " s
.

-3 )(t ! t1); 1 s < t < t2 

a) Find the speed and position of the car as a function of time.

b) Graph the speed and position of the car as a function of time.

c) A bicycle rider is riding at a constant speed of vb,0 and at t = 0 is 17 m behind 


the car. The bicyclist reaches the car when the car just comes to rest. Find the 
speed of the bicycle. 

Solution: a) We need to integrate the acceleration for both intervals. The first interval is 
easy, the speed is constant. For the second integral we need to be careful about the 
endpoints of the integral and the fact that the integral is the change in speed so we must 
subtract vc (t1) = vc0 

$vc0; 0 < t < t1 = 1s 
& 

vc (t) = %
&vc (t1) + # 

t 

!(6 m " s-3 )(t ! t1); 1 s < t < t2

. 

' t1 

After integrating we get 

vc (t) = 
#
%
$ 
%&


vc0; 0 < t < t1 = 1s 

v c0 ! (3 m " s-3 )(t ! t1)2 t 
; 1 s < t < t2

. 
t1 

Now substitute the endpoint so the integral to finally yield 

# -1;%vc0 = 12 m ! s 0 < t < t1 = 1s 
vc (t) = $ . 

&12 m ! s-1 " (3 m ! s-3 )(t " t1)2; 1 s < t < t2% 

For this one dimensional motion the change in position is the integral of the speed so 
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$ t1 

&xc (0) + " (12 m ! s-1 )dt; 0 < t < t1 = 1s 
xc (t) = %

& 0 
t 

. 
& -3 )(t # t1)2 

&xc (t1) + " (12 m ! s-1 # (3m ! s )dt; 1 s < t < t2 

' t1 

Upon integration we have 

xc (t) = $
%
#xc (0) + (12 m ! s-1 )t; 0 < t < t1 = 1s 

t . 
x (t1) + ((12 m ! s-1 )(t " t1) " (1 m ! s-3 )(t " t1)3 ) ; 1 s < t < t2% c& t1 

We choose our coordinate system such that xc (0) = 0 , 

therefore xc (t1) = (12 m ! s-1)(1 s)=12 m . So after substituting in the endpoints of the 
integration interval we have that 

xc (t) = 
%
$
#(12 m ! s-1 )t; 

-1)(

0 

t 

< 

" 

t

t

< 

1 

t1 = 1s 
-3 )(t " t1

. 
&12 m+(12 m ! s ) " (1 m ! s% )3; 1 s < t < t2 

b) Graph the speed and position of the car as a function of time. 

Solution: The graphs of the speed and position are shown below. 

c) A bicycle rider is riding at a constant speed of vb,0 and at t = 0 is 17 m behind 
the car. The bicyclist reaches the car when the car just comes to rest. Find the 
speed of the bicycle. 

Solution: we are looking for the instant that t2 the car has come to rest. So we use our 
expression for the speed for the interval1 s < t < t2 , 

0 = vc (t2 ) = 12 m ! s-1 " (3 m ! s-3 )(t2 " t1)2 . 

We can solve this for t2 : 

(t2 ! t1)2 = 4 s2 . 

We have two solutions: (t2 ! t1) = 2 s or (t2 ! t1) = !2 s . The second solution 
t2 = t1 ! 2 s = 1s ! 2 s = ! 1s does not apply to our time interval  and so 
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t2 = t1 + 2 s = 1 s + 2 s = 3 s . 

During the position of the car at t2 is then given by 

xc (t2 ) = 12 m+(12 m ! s-1 )(t2 " t1) " (1 m ! s-3 )(t2 " t1)3 

. 
= 12 m+(12 m ! s-1 )(2 s) " (1 m ! s-3 )(2 s)3 = 28 m 

Since the bicycle is traveling at a constant speed with an initial position xb0 = !17 m , the 
position of the bicycle is given by 

xb (t) = !17 m + vbt . 

The bicycle and car intersect at instant t2 = 3 s : 

xb (t2 ) = xc (t2 ) . 

Therefore 

!17 m + vb (3 s) = 28 m . 

So the speed of the bicycle is 

(28 m + 17 m) -1 v = = 15 m ! s .b (3 s) 
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